矩阵怎么求行列式
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了矩阵怎么求行列式相关的知识,希望对你有一定的参考价值。
参考技术A一般有以下几种方法:
1、计算A^2,A^3 找规律,然后用归纳法证明。
2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A
注:β^Tα =α^Tβ = tr(αβ^T)
3、分拆法:A=B+C,BC=CB,用二项式公式展开。
适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0
4、用对角化 A=P^-1diagP
A^n = P^-1diag^nP
扩展资料:
将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
参考资料来源:百度百科——矩阵
怎么理解海森矩阵和雅可比矩阵
雅是多值函数的偏导数构成的矩阵,可以理解成多值函数的导数,其行列式更可以理解为变换之间的形变,海森是二阶的,主要用于判断极值。 参考技术A雅克比矩阵是一阶偏导,而海森矩阵是二阶导,
海森矩阵
以上是关于矩阵怎么求行列式的主要内容,如果未能解决你的问题,请参考以下文章