HDOJ 4460 Friend Chains 图的最长路

Posted mthoutai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDOJ 4460 Friend Chains 图的最长路相关的知识,希望对你有一定的参考价值。


类似于树的直径,从随意一个点出发,找到距离该点最远的且度数最少的点.

然后再做一次最短路

Friend Chains

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4227    Accepted Submission(s): 1359


Problem Description
For a group of people, there is an idea that everyone is equals to or less than 6 steps away from any other person in the group, by way of introduction. So that a chain of "a friend of a friend" can be made to connect any 2 persons and it contains no more than 7 persons.
For example, if XXX is YYY’s friend and YYY is ZZZ’s friend, but XXX is not ZZZ‘s friend, then there is a friend chain of length 2 between XXX and ZZZ. The length of a friend chain is one less than the number of persons in the chain.
Note that if XXX is YYY’s friend, then YYY is XXX’s friend. Give the group of people and the friend relationship between them. You want to know the minimum value k, which for any two persons in the group, there is a friend chain connecting them and the chain‘s length is no more than k .
 

Input
There are multiple cases. 
For each case, there is an integer N (2<= N <= 1000) which represents the number of people in the group. 
Each of the next N lines contains a string which represents the name of one people. The string consists of alphabet letters and the length of it is no more than 10. 
Then there is a number M (0<= M <= 10000) which represents the number of friend relationships in the group. 
Each of the next M lines contains two names which are separated by a space ,and they are friends. 
Input ends with N = 0.
 

Output
For each case, print the minimum value k in one line. 
If the value of k is infinite, then print -1 instead.
 

Sample Input
3 XXX YYY ZZZ 2 XXX YYY YYY ZZZ 0
 

Sample Output
2
 

Source
 


/* ***********************************************
Author        :CKboss
Created Time  :2015年08月17日 星期一 16时35分00秒
File Name     :HDOJ4460.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int INF=0x3f3f3f3f;
const int maxn=2100;

int n,m;
int id=1;
map<string,int> msi;


int getID(string name)
{
	if(msi[name]==0) msi[name]=id++;
	return msi[name]; 
}

struct Edge
{
	int to,next,cost;
}edge[maxn*maxn];

int Adj[maxn],Size;
int du[maxn];

void init()
{
	id=1; msi.clear();
	memset(du,0,sizeof(du));
	memset(Adj,-1,sizeof(Adj)); Size=0;
}

void Add_Edge(int u,int v)
{
	edge[Size].to=v;
	edge[Size].cost=1;
	edge[Size].next=Adj[u];
	Adj[u]=Size++;
}

int dist[maxn],cq[maxn];
bool inq[maxn];

bool spfa(int st)
{
    memset(dist,63,sizeof(dist));
    memset(cq,0,sizeof(cq));
    memset(inq,false,sizeof(inq));
    dist[st]=0;
    queue<int> q;
    inq[st]=true;q.push(st); cq[st]=1;

    while(!q.empty())
    {
        int u=q.front();q.pop();

        for(int i=Adj[u];~i;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dist[v]>dist[u]+edge[i].cost)
            {
                dist[v]=dist[u]+edge[i].cost;
                if(!inq[v])
                {
                    inq[v]=true;
                    cq[v]++;
                    if(cq[v]>=n+10) return false;
                    q.push(v);
                }
            }
        }
        inq[u]=false;
    }
    return true;
}

int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);

	while(scanf("%d",&n)!=EOF&&n)
	{
		init();
		string name1,name2;
		for(int i=1;i<=n;i++) 
		{
			cin>>name1;
		}
		scanf("%d",&m);
		for(int i=0;i<m;i++)
		{
			cin>>name1>>name2;
			int id1=getID(name1);
			int id2=getID(name2);
			Add_Edge(id1,id2); Add_Edge(id2,id1);
			du[id1]++; du[id2]++;
		}
		spfa(1);
		int st=1;
		for(int i=2;i<=n;i++)
		{
			if(dist[st]<dist[i]) st=i;
			else if(dist[st]==dist[i])
			{
				if(du[st]>du[i]) st=i;
			}
		}
		spfa(st);
		int ans=0;
		for(int i=1;i<=n;i++) ans=max(ans,dist[i]);
		if(ans==INF) ans=-1;
		cout<<ans<<endl;
	}
    
    return 0;
}




以上是关于HDOJ 4460 Friend Chains 图的最长路的主要内容,如果未能解决你的问题,请参考以下文章

[HDOJ6152] Friend-Graph(拉姆齐定理)

百科知识 英特尔处理器I5 4460和4590有哪些区别

HDOJ图论题集

HDOJ5521(巧妙构建完全图)

HDOJ1083-Courses(二分图匹配(匈牙利算法))

hdoj-1068(二分图的最小点覆盖)