poj 1556 题解
Posted 心里只有学习
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 1556 题解相关的知识,希望对你有一定的参考价值。
题意:如图,大概猜的到了?最多18面墙,每面墙上两个门,从(0,5)走到(10,5)的最短距离,保留两位小数
题解:这道题非常贴心地按序给出墙的坐标,把每个端点当做图里面的一个节点,用O(n3)时间判断每两点之间是否能连边,判断方法为判断直线与线段是否相交(事实上是两个线段,但在这道题里面用直线交线段即可),跑一个最短路即可(既然已经到了三次方级别,干脆写了最短的Floyd)
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> using namespace std; #define rep(i,a,b) for (int i=a;i<=b;++i) const double eps=1e-7; struct point{ double x,y; point(){} point (double a,double b): x(a),y(b) {} friend point operator + (const point &a,const point &b){ return point(a.x+b.x,a.y+b.y); } friend point operator - (const point &a,const point &b){ return point(a.x-b.x,a.y-b.y); } friend point operator * (const double &r,const point &a){ return point(r*a.x,r*a.y); } friend bool operator == (const point &a,const point &b){ return (abs(a.x-b.x)<eps && abs(a.y-b.y)<eps); } double norm(){ return sqrt(x*x+y*y); } }; inline double det(point a,point b) {return a.x*b.y-a.y*b.x;} inline double dot(point a,point b) {return a.x*b.x+a.y*b.y;} inline double dist(point a,point b) {return (a-b).norm();} inline bool line_cross_segment(point s,point t,point a,point b) { return !(det(s-a,t-a)*det(s-b,t-b)>eps); } int n,m; point s[1000]; double dis[1000][1000],x,y; bool ok(int a,int b) { point ts=s[a],tt=s[b]; if (a/4+(a%4!=0)==b/4+(b%4!=0)) return false; rep(i,a/4+(a%4!=0)+1,b/4+(b%4!=0)-1) { if (!line_cross_segment(ts,tt,s[(i-1)*4+1],s[(i-1)*4+2]) && !(line_cross_segment(ts,tt,s[(i-1)*4+3],s[(i-1)*4+4]))) return false; } return true; } int main() { while (~scanf("%d",&n)) { if (n==-1) break; m=4*n+1; rep(i,0,m) rep(j,0,m) dis[i][j]=1000000; rep(i,0,m) dis[i][i]=0; s[0]=point(0,5); rep(i,1,n) { scanf("%lf",&x); rep(j,1,4) { scanf("%lf",&y); s[4*(i-1)+j]=point(x,y); } } s[m]=point(10,5); rep(i,0,m) rep(j,i+1,m) if (ok(i,j)) dis[i][j]=dist(s[i],s[j]); rep(i,0,m) rep(j,0,m) rep(k,0,m) dis[j][k]=min(dis[j][k],dis[j][i]+dis[i][k]); printf("%.2f\\n",dis[0][m]); } }
以上是关于poj 1556 题解的主要内容,如果未能解决你的问题,请参考以下文章