torch学习笔记

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了torch学习笔记相关的知识,希望对你有一定的参考价值。

torch-nn学习:Simpley Layer

torch7入门续集(三):Simple Layers

use of unsqueeze():

1 module = nn.Unsqueeze(pos [, numInputDims])
1 input = torch.Tensor(2,4,3)          # input: 2*4*3
2 print(input.unsqueeze(0).size())     # prints-torch.size([1,2,3,4])

use of view():

1 input = torch.Tensor(2,4,3)          # input: 2*4*3
2 print(input.view(1,-1,-1,-1).size()) # print-torch.size([1,2,4,3])

squeeze 若指定维度,则把对应维度压缩,否则压缩所有维度为1的维度。

eg. B = squeeze(A),B与A有相同的元素,但所有只有一行或一列的维度(singleton dimension)被去除掉了。

 1 module = nn.Squeeze([dim, numInputDims])
 2 x=torch.rand(2,1,2,1,2)
 3 > x
 4 (1,1,1,.,.) =
 5   0.6020  0.8897
 6 (2,1,1,.,.) =
 7   0.4713  0.2645
 8 (1,1,2,.,.) =
 9   0.4441  0.9792
10 (2,1,2,.,.) =
11   0.5467  0.8648
12 
13 > torch.squeeze(x,2)
14 (1,1,.,.) =
15   0.6020  0.8897
16 (2,1,.,.) =
17   0.4713  0.2645
18 (1,2,.,.) =
19   0.4441  0.9792
20 (2,2,.,.) =
21   0.5467  0.8648
22 [torch.DoubleTensor of dimension 2x2x1x2]

dropout

未完待续

以上是关于torch学习笔记的主要内容,如果未能解决你的问题,请参考以下文章

学习笔记:python3,代码片段(2017)

pytorch笔记:调整学习率(torch.optim.lr_scheduler)

torch学习笔记3--tensor介绍1,对tensor的基本认知

Pytorch学习笔记——多层感知机的实现

pytorch学习笔记第三篇———自动梯度(torch.autograd)

PyTorch学习笔记 2. 运行官网训练推理的入门示例