Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现相关的知识,希望对你有一定的参考价值。
假设Spark的部署方式选择Standalone,一个採用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure)。Spark能够选用ZooKeeper来实现HA。
ZooKeeper提供了一个Leader Election机制,利用这个机制能够保证尽管集群存在多个Master可是唯独一个是Active的。其它的都是Standby。当Active的Master出现问题时,另外的一个Standby Master会被选举出来。
因为集群的信息,包含Worker。 Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有不论什么的影响。加入ZooKeeper的集群总体架构例如以下图所看到的。
1. Master的重新启动策略
Master在启动时。会依据启动參数来决定不同的Master故障重新启动策略:
- ZOOKEEPER实现HA
- FILESYSTEM:实现Master无数据丢失重新启动,集群的执行时数据会保存到本地/网络文件系统上
- 丢弃全部原来的数据重新启动
Master::preStart()能够看出这三种不同逻辑的实现。
override def preStart() { logInfo("Starting Spark master at " + masterUrl) ... //persistenceEngine是持久化Worker,Driver和Application信息的,这样在Master又一次启动时不会影响 //已经提交Job的执行 persistenceEngine = RECOVERY_MODE match { case "ZOOKEEPER" => logInfo("Persisting recovery state to ZooKeeper") new ZooKeeperPersistenceEngine(SerializationExtension(context.system), conf) case "FILESYSTEM" => logInfo("Persisting recovery state to directory: " + RECOVERY_DIR) new FileSystemPersistenceEngine(RECOVERY_DIR, SerializationExtension(context.system)) case _ => new BlackHolePersistenceEngine() } //leaderElectionAgent负责Leader的选取。 leaderElectionAgent = RECOVERY_MODE match { case "ZOOKEEPER" => context.actorOf(Props(classOf[ZooKeeperLeaderElectionAgent], self, masterUrl, conf)) case _ => // 唯独一个Master的集群。那么当前的Master就是Active的 context.actorOf(Props(classOf[MonarchyLeaderAgent], self)) } }
RECOVERY_MODE是一个字符串,能够从spark-env.sh中去设置。
val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")
假设不设置spark.deploy.recoveryMode的话,那么集群的全部执行数据在Master重新启动是都会丢失。这个结论是从BlackHolePersistenceEngine的实现得出的。
private[spark] class BlackHolePersistenceEngine extends PersistenceEngine { override def addApplication(app: ApplicationInfo) {} override def removeApplication(app: ApplicationInfo) {} override def addWorker(worker: WorkerInfo) {} override def removeWorker(worker: WorkerInfo) {} override def addDriver(driver: DriverInfo) {} override def removeDriver(driver: DriverInfo) {} override def readPersistedData() = (Nil, Nil, Nil) }
它把全部的接口实现为空。
PersistenceEngine是一个trait。作为对照,能够看一下ZooKeeper的实现。
class ZooKeeperPersistenceEngine(serialization: Serialization, conf: SparkConf) extends PersistenceEngine with Logging { val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/master_status" val zk: CuratorFramework = SparkCuratorUtil.newClient(conf) SparkCuratorUtil.mkdir(zk, WORKING_DIR) // 将app的信息序列化到文件WORKING_DIR/app_{app.id}中 override def addApplication(app: ApplicationInfo) { serializeIntoFile(WORKING_DIR + "/app_" + app.id, app) } override def removeApplication(app: ApplicationInfo) { zk.delete().forPath(WORKING_DIR + "/app_" + app.id) }
Spark使用的并非ZooKeeper的API,而是使用的org.apache.curator.framework.CuratorFramework 和 org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch} 。Curator在ZooKeeper上做了一层非常友好的封装。
2. 集群启动參数的配置
简单总结一下參数的设置,通过上述代码的分析。我们知道为了使用ZooKeeper至少应该设置一下參数(实际上,只须要设置这些參数。通过设置spark-env.sh:
spark.deploy.recoveryMode=ZOOKEEPER spark.deploy.zookeeper.url=zk_server_1:2181,zk_server_2:2181 spark.deploy.zookeeper.dir=/dir // OR 通过一下方式设置 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER " export SPARK_DAEMON_JAVA_OPTS="${SPARK_DAEMON_JAVA_OPTS} -Dspark.deploy.zookeeper.url=zk_server1:2181,zk_server_2:2181"
各个參数的意义:
參数 | 默认值 | 含义 |
spark.deploy.recoveryMode | NONE | 恢复模式(Master又一次启动的模式)。有三种:1, ZooKeeper, 2。 FileSystem, 3 NONE |
spark.deploy.zookeeper.url | ZooKeeper的Server地址 | |
spark.deploy.zookeeper.dir | /spark | ZooKeeper 保存集群元数据信息的文件文件夹,包含Worker,Driver和Application。 |
3. CuratorFramework简单介绍
CuratorFramework极大的简化了ZooKeeper的使用,它提供了high-level的API,而且基于ZooKeeper加入了非常多特性,包含
- 自己主动连接管理:连接到ZooKeeper的Client有可能会连接中断。Curator处理了这样的情况。对于Client来说自己主动重连是透明的。
- 简洁的API:简化了原生态的ZooKeeper的方法,事件等。提供了一个简单易用的接口。
- Recipe的实现(很多其它介绍请点击Recipes):
- Leader的选择
- 共享锁
- 缓存和监控
- 分布式的队列
- 分布式的优先队列
CuratorFrameworks通过CuratorFrameworkFactory来创建线程安全的ZooKeeper的实例。
CuratorFrameworkFactory.newClient()提供了一个简单的方式来创建ZooKeeper的实例,能够传入不同的參数来对实例进行全然的控制。获取实例后,必须通过start()来启动这个实例。在结束时,须要调用close()。
/** * Create a new client * * * @param connectString list of servers to connect to * @param sessionTimeoutMs session timeout * @param connectionTimeoutMs connection timeout * @param retryPolicy retry policy to use * @return client */ public static CuratorFramework newClient(String connectString, int sessionTimeoutMs, int connectionTimeoutMs, RetryPolicy retryPolicy) { return builder(). connectString(connectString). sessionTimeoutMs(sessionTimeoutMs). connectionTimeoutMs(connectionTimeoutMs). retryPolicy(retryPolicy). build(); }
须要关注的还有两个Recipe:org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch}。
首先看一下LeaderlatchListener。它在LeaderLatch状态变化的时候被通知:
- 在该节点被选为Leader的时候,接口isLeader()会被调用
- 在节点被剥夺Leader的时候,接口notLeader()会被调用
因为通知是异步的。因此有可能在接口被调用的时候。这个状态是准确的。须要确认一下LeaderLatch的hasLeadership()是否的确是true/false。这一点在接下来Spark的实现中能够得到体现。
/** * LeaderLatchListener can be used to be notified asynchronously about when the state of the LeaderLatch has changed. * * Note that just because you are in the middle of one of these method calls, it does not necessarily mean that * hasLeadership() is the corresponding true/false value. It is possible for the state to change behind the scenes * before these methods get called. The contract is that if that happens, you should see another call to the other * method pretty quickly. */ public interface LeaderLatchListener { /** * This is called when the LeaderLatch‘s state goes from hasLeadership = false to hasLeadership = true. * * Note that it is possible that by the time this method call happens, hasLeadership has fallen back to false. If * this occurs, you can expect {@link #notLeader()} to also be called. */ public void isLeader(); /** * This is called when the LeaderLatch‘s state goes from hasLeadership = true to hasLeadership = false. * * Note that it is possible that by the time this method call happens, hasLeadership has become true. If * this occurs, you can expect {@link #isLeader()} to also be called. */ public void notLeader(); }
LeaderLatch负责在众多连接到ZooKeeper Cluster的竞争者中选择一个Leader。
Leader的选择机制能够看ZooKeeper的详细实现,LeaderLatch这是完毕了非常好的封装。我们只须要要知道在初始化它的实例后。须要通过
public class LeaderLatch implements Closeable { private final Logger log = LoggerFactory.getLogger(getClass()); private final CuratorFramework client; private final String latchPath; private final String id; private final AtomicReference<State> state = new AtomicReference<State>(State.LATENT); private final AtomicBoolean hasLeadership = new AtomicBoolean(false); private final AtomicReference<String> ourPath = new AtomicReference<String>(); private final ListenerContainer<LeaderLatchListener> listeners = new ListenerContainer<LeaderLatchListener>(); private final CloseMode closeMode; private final AtomicReference<Future<?>> startTask = new AtomicReference<Future<?>>(); . . . /** * Attaches a listener to this LeaderLatch * <p/> * Attaching the same listener multiple times is a noop from the second time on. * <p/> * All methods for the listener are run using the provided Executor. It is common to pass in a single-threaded * executor so that you can be certain that listener methods are called in sequence, but if you are fine with * them being called out of order you are welcome to use multiple threads. * * @param listener the listener to attach */ public void addListener(LeaderLatchListener listener) { listeners.addListener(listener); }
通过addListener能够将我们实现的Listener加入到LeaderLatch。在Listener里。我们在两个接口里实现了被选为Leader或者被剥夺Leader角色时的逻辑就可以。
4. ZooKeeperLeaderElectionAgent的实现
实际上因为有Curator的存在。Spark实现Master的HA就变得非常easy了,ZooKeeperLeaderElectionAgent实现了接口LeaderLatchListener。在isLeader()确认所属的Master被选为Leader后,向Master发送消息ElectedLeader,Master会将自己的状态改为ALIVE。
当noLeader()被调用时,它会向Master发送消息RevokedLeadership时,Master会关闭。
private[spark] class ZooKeeperLeaderElectionAgent(val masterActor: ActorRef, masterUrl: String, conf: SparkConf) extends LeaderElectionAgent with LeaderLatchListener with Logging { val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/leader_election" // zk是通过CuratorFrameworkFactory创建的ZooKeeper实例 private var zk: CuratorFramework = _ // leaderLatch:Curator负责选出Leader。private var leaderLatch: LeaderLatch = _ private var status = LeadershipStatus.NOT_LEADER override def preStart() { logInfo("Starting ZooKeeper LeaderElection agent") zk = SparkCuratorUtil.newClient(conf) leaderLatch = new LeaderLatch(zk, WORKING_DIR) leaderLatch.addListener(this) leaderLatch.start() }
在prestart中,启动了leaderLatch来处理选举ZK中的Leader。就如在上节分析的,基本的逻辑在isLeader和noLeader中。
override def isLeader() { synchronized { // could have lost leadership by now. //如今leadership可能已经被剥夺了。。详情參见Curator的实现。 if (!leaderLatch.hasLeadership) { return } logInfo("We have gained leadership") updateLeadershipStatus(true) } } override def notLeader() { synchronized { // 如今可能赋予leadership了。详情參见Curator的实现。 if (leaderLatch.hasLeadership) { return } logInfo("We have lost leadership") updateLeadershipStatus(false) } }
updateLeadershipStatus的逻辑非常easy,就是向Master发送消息。
def updateLeadershipStatus(isLeader: Boolean) { if (isLeader && status == LeadershipStatus.NOT_LEADER) { status = LeadershipStatus.LEADER masterActor ! ElectedLeader } else if (!isLeader && status == LeadershipStatus.LEADER) { status = LeadershipStatus.NOT_LEADER masterActor ! RevokedLeadership } }
5. 设计理念
为了解决Standalone模式下的Master的SPOF,Spark採用了ZooKeeper提供的选举功能。Spark并没有採用ZooKeeper原生的Java API,而是採用了Curator,一个对ZooKeeper进行了封装的框架。採用了Curator后,Spark不用管理与ZooKeeper的连接,这些对于Spark来说都是透明的。
Spark只使用了100行代码,就实现了Master的HA。当然了,Spark是站在的巨人的肩膀上。谁又会去反复发明轮子呢?
请您支持:
假设你看到这里。相信这篇文章对您有所帮助。假设是的话,请为本文投一下票吧: 点击投票,多谢。假设您已经在投票页面,请点击以下的投一票吧!BTW。即使您没有CSDN的帐号,能够使用第三方登录的,包含微博,QQ,Gmail。GitHub,百度。等。
以上是关于Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现的主要内容,如果未能解决你的问题,请参考以下文章
Spark技术内幕:Client,Master和Worker 通信源代码解析
Spark Executor内幕彻底解密:Executor工作原理图ExecutorBackend注册源码解密Executor实例化内幕Executor具体工作内幕
Spark Executor内幕彻底解密(DT大数据梦工厂)
第31课:Spark资源调度分配内幕天机彻底解密:Driver在Cluster模式下的启动两种不同的资源调度方式源码彻底解析资源调度内幕总结