Spark源码分析之二:Job的调度模型与运行反馈
Posted 吉日木图
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark源码分析之二:Job的调度模型与运行反馈相关的知识,希望对你有一定的参考价值。
在《Spark源码分析之Job提交运行总流程概述》一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段:
1、Job的调度模型与运行反馈;
2、Stage划分;
3、Stage提交:对应TaskSet的生成。
今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈。
首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop中,等待调度执行。入口方法为DAGScheduler的runJon()方法。代码如下:
- /**
- * Run an action job on the given RDD and pass all the results to the resultHandler function as
- * they arrive.
- *
- * @param rdd target RDD to run tasks on
- * @param func a function to run on each partition of the RDD
- * @param partitions set of partitions to run on; some jobs may not want to compute on all
- * partitions of the target RDD, e.g. for operations like first()
- * @param callSite where in the user program this job was called
- * @param resultHandler callback to pass each result to
- * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
- *
- * @throws Exception when the job fails
- */
- def runJob[T, U](
- rdd: RDD[T],
- func: (TaskContext, Iterator[T]) => U,
- partitions: Seq[Int],
- callSite: CallSite,
- resultHandler: (Int, U) => Unit,
- properties: Properties): Unit = {
- // 开始时间
- val start = System.nanoTime
- // 调用submitJob()方法,提交Job,返回JobWaiter
- // rdd为最后一个rdd,即target RDD to run tasks on
- // func为该rdd上每个分区需要执行的函数,a function to run on each partition of the RDD
- // partitions为该rdd上需要执行操作的分区集合,set of partitions to run on
- // callSite为用户程序job被调用的地方,where in the user program this job was called
- val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
- // JobWaiter调用awaitResult()方法等待结果
- waiter.awaitResult() match {
- case JobSucceeded => // Job运行成功
- logInfo("Job %d finished: %s, took %f s".format
- (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
- case JobFailed(exception: Exception) =>// Job运行失败
- logInfo("Job %d failed: %s, took %f s".format
- (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
- // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
- val callerStackTrace = Thread.currentThread().getStackTrace.tail
- exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
- throw exception
- }
- }
runJob()方法就做了三件事:
首先,获取开始时间,方便最后计算Job执行时间;
其次,调用submitJob()方法,提交Job,返回JobWaiter类型的对象waiter;
最后,waiter调用JobWaiter的awaitResult()方法等待Job运行结果,这个运行结果就俩:JobSucceeded代表成功,JobFailed代表失败。
awaitResult()方法通过轮询标志位_jobFinished,如果为false,则调用this.wait()继续等待,否则说明Job运行完成,返回JobResult,其代码如下:
- def awaitResult(): JobResult = synchronized {
- // 循环,如果标志位_jobFinished为false,则一直循环,否则退出,返回JobResult
- while (!_jobFinished) {
- this.wait()
- }
- return jobResult
- }
而这个标志位_jobFinished是在Task运行完成后,如果已完成Task数目等于总Task数目时,或者整个Job运行失败时设置的,随着标志位的设置,Job运行结果jobResult也同步进行设置,代码如下:
- // 任务运行完成
- override def taskSucceeded(index: Int, result: Any): Unit = synchronized {
- if (_jobFinished) {
- throw new UnsupportedOperationException("taskSucceeded() called on a finished JobWaiter")
- }
- resultHandler(index, result.asInstanceOf[T])
- finishedTasks += 1
- // 已完成Task数目是否等于总Task数目
- if (finishedTasks == totalTasks) {
- // 设置标志位_jobFinished为ture
- _jobFinished = true
- // 作业运行结果为成功
- jobResult = JobSucceeded
- this.notifyAll()
- }
- }
- // 作业失败
- override def jobFailed(exception: Exception): Unit = synchronized {
- // 设置标志位_jobFinished为ture
- _jobFinished = true
- // 作业运行结果为失败
- jobResult = JobFailed(exception)
- this.notifyAll()
- }
接下来,看看submitJob()方法,代码定义如下:
- /**
- * Submit an action job to the scheduler.
- *
- * @param rdd target RDD to run tasks on
- * @param func a function to run on each partition of the RDD
- * @param partitions set of partitions to run on; some jobs may not want to compute on all
- * partitions of the target RDD, e.g. for operations like first()
- * @param callSite where in the user program this job was called
- * @param resultHandler callback to pass each result to
- * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
- *
- * @return a JobWaiter object that can be used to block until the job finishes executing
- * or can be used to cancel the job.
- *
- * @throws IllegalArgumentException when partitions ids are illegal
- */
- def submitJob[T, U](
- rdd: RDD[T],
- func: (TaskContext, Iterator[T]) => U,
- partitions: Seq[Int],
- callSite: CallSite,
- resultHandler: (Int, U) => Unit,
- properties: Properties): JobWaiter[U] = {
- // Check to make sure we are not launching a task on a partition that does not exist.
- // 检测rdd分区以确保我们不会在一个不存在的partition上launch一个task
- val maxPartitions = rdd.partitions.length
- partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
- throw new IllegalArgumentException(
- "Attempting to access a non-existent partition: " + p + ". " +
- "Total number of partitions: " + maxPartitions)
- }
- // 为Job生成一个jobId,jobId为AtomicInteger类型,getAndIncrement()确保了原子操作性,每次生成后都自增
- val jobId = nextJobId.getAndIncrement()
- // 如果partitions大小为0,即没有需要执行任务的分区,快速返回
- if (partitions.size == 0) {
- // Return immediately if the job is running 0 tasks
- return new JobWaiter[U](this, jobId, 0, resultHandler)
- }
- assert(partitions.size > 0)
- // func转化下,否则JobSubmitted无法接受这个func参数,T转变为_
- val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
- // 创建一个JobWaiter对象
- val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
- // eventProcessLoop加入一个JobSubmitted事件到事件队列中
- eventProcessLoop.post(JobSubmitted(
- jobId, rdd, func2, partitions.toArray, callSite, waiter,
- SerializationUtils.clone(properties)))
- // 返回JobWaiter
- waiter
- }
submitJob()方法一共做了5件事情:
第一,数据检测,检测rdd分区以确保我们不会在一个不存在的partition上launch一个task,并且,如果partitions大小为0,即没有需要执行任务的分区,快速返回;
第二,为Job生成一个jobId,该jobId为AtomicInteger类型,getAndIncrement()确保了原子操作性,每次生成后都自增;
第三,将func转化下,否则JobSubmitted无法接受这个func参数,T转变为_;
第四,创建一个JobWaiter对象waiter,该对象会在方法结束时返回给上层方法,以用来监测Job运行结果;
第五,将一个JobSubmitted事件加入到事件队列eventProcessLoop中,等待工作线程轮询调度(速度很快)。
这里,我们有必要研究下事件队列eventProcessLoop,eventProcessLoop为DAGSchedulerEventProcessLoop类型的,在DAGScheduler初始化时被定义并赋值,代码如下:
- // 创建DAGSchedulerEventProcessLoop类型的成员变量eventProcessLoop
- private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)
DAGSchedulerEventProcessLoop继承自EventLoop,我们先来看看这个EventLoop的定义。
- /**
- * An event loop to receive events from the caller and process all events in the event thread. It
- * will start an exclusive event thread to process all events.
- * EventLoop用来接收来自调用者的事件并在event thread中除了所有的事件。它将开启一个专门的事件处理线程处理所有的事件。
- *
- * Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can
- * handle events in time to avoid the potential OOM.
- */
- private[spark] abstract class EventLoop[E](name: String) extends Logging {
- // LinkedBlockingDeque类型的事件队列,队列元素为E类型
- private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()
- // 标志位
- private val stopped = new AtomicBoolean(false)
- // 事件处理线程
- private val eventThread = new Thread(name) {
- // 设置为后台线程
- setDaemon(true)
- override def run(): Unit = {
- try {
- // 如果标志位stopped没有被设置为true,一直循环
- while (!stopped.get) {
- // 从事件队列中take一条事件
- val event = eventQueue.take()
- try {
- // 调用onReceive()方法进行处理
- onReceive(event)
- } catch {
- case NonFatal(e) => {
- try {
- onError(e)
- } catch {
- case NonFatal(e) => logError("Unexpected error in " + name, e)
- }
- }
- }
- }
- } catch {
- case ie: InterruptedException => // exit even if eventQueue is not empty
- case NonFatal(e) => logError("Unexpected error in " + name, e)
- }
- }
- }
- def start(): Unit = {
- if (stopped.get) {
- throw new IllegalStateException(name + " has already been stopped")
- }
- // Call onStart before starting the event thread to make sure it happens before onReceive
- onStart()
- eventThread.start()
- }
- def stop(): Unit = {
- if (stopped.compareAndSet(false, true)) {
- eventThread.interrupt()
- var onStopCalled = false
- try {
- eventThread.join()
- // Call onStop after the event thread exits to make sure onReceive happens before onStop
- onStopCalled = true
- onStop()
- } catch {
- case ie: InterruptedException =>
- Thread.currentThread().interrupt()
- if (!onStopCalled) {
- // ie is thrown from `eventThread.join()`. Otherwise, we should not call `onStop` since
- // it‘s already called.
- onStop()
- }
- }
- } else {
- // Keep quiet to allow calling `stop` multiple times.
- }
- }
- /**
- * Put the event into the event queue. The event thread will process it later.
- * 将事件加入到时间队列。事件线程过会会处理它。
- */
- def post(event: E): Unit = {
- // 将事件加入到待处理队列
- eventQueue.put(event)
- }
- /**
- * Return if the event thread has already been started but not yet stopped.
- */
- def isActive: Boolean = eventThread.isAlive
- /**
- * Invoked when `start()` is called but before the event thread starts.
- */
- protected def onStart(): Unit = {}
- /**
- * Invoked when `stop()` is called and the event thread exits.
- */
- protected def onStop(): Unit = {}
- /**
- * Invoked in the event thread when polling events from the event queue.
- *
- * Note: Should avoid calling blocking actions in `onReceive`, or the event thread will be blocked
- * and cannot process events in time. If you want to call some blocking actions, run them in
- * another thread.
- */
- protected def onReceive(event: E): Unit
- /**
- * Invoked if `onReceive` throws any non fatal error. Any non fatal error thrown from `onError`
- * will be ignored.
- */
- protected def onError(e: Throwable): Unit
- }
我们可以看到,EventLoop实际上就是一个任务队列及其对该队列一系列操作的封装。在它内部,首先定义了一个LinkedBlockingDeque类型的事件队列,队列元素为E类型,其中DAGSchedulerEventProcessLoop存储的则是DAGSchedulerEvent类型的事件,代码如下:
- // LinkedBlockingDeque类型的事件队列,队列元素为E类型
- private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()
并提供了一个后台线程,专门对事件队列里的事件进行监控,并调用onReceive()方法进行处理,代码如下:
- // 事件处理线程
- private val eventThread = new Thread(name) {
- // 设置为后台线程
- setDaemon(true)
- override def run(): Unit = {
- try {
- // 如果标志位stopped没有被设置为true,一直循环
- while (!stopped.get) {
- // 从事件队列中take一条事件
- val event = eventQueue.take()
- try {
- // 调用onReceive()方法进行处理
- onReceive(event)
- } catch {
- case NonFatal(e) => {
- try {
- onError(e)
- } catch {
- case NonFatal(e) => logError("Unexpected error in " + name, e)
- }
- }
- }
- }
- } catch {
- case ie: InterruptedException => // exit even if eventQueue is not empty
- case NonFatal(e) => logError("Unexpected error in " + name, e)
- }
- }
- }
那么如何向队列中添加事件呢?调用其post()方法,传入事件即可。如下:
- /**
- * Put the event into the event queue. The event thread will process it later.
- * 将事件加入到时间队列。事件线程过会会处理它。
- */
- def post(event: E): Unit = {
- // 将事件加入到待处理队列
- eventQueue.put(event)
- }
言归正传,上面提到,submitJob()方法利用eventProcessLoop的post()方法加入一个JobSubmitted事件到事件队列中,那么DAGSchedulerEventProcessLoop对于JobSubmitted事件是如何处理的呢?我们看它的onReceive()方法,源码如下:
- /**
- * The main event loop of the DAG scheduler.
- * DAGScheduler中事件主循环
- */
- override def onReceive(event: DAGSchedulerEvent): Unit = {
- val timerContext = timer.time()
- try {
- // 调用doOnReceive()方法,将DAGSchedulerEvent类型的event传递进去
- doOnReceive(event)
- } finally {
- timerContext.stop()
- }
- }
继续看doOnReceive()方法,代码如下:
- // 事件处理调度函数
- private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
- // 如果是JobSubmitted事件,调用dagScheduler.handleJobSubmitted()方法处理
- case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
- dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
- // 如果是MapStageSubmitted事件,调用dagScheduler.handleMapStageSubmitted()方法处理
- case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
- dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
- case StageCancelled(stageId) =>
- dagScheduler.handleStageCancellation(stageId)
- case JobCancelled(jobId) =>
- dagScheduler.handleJobCancellation(jobId)
- case JobGroupCancelled(groupId) =>
- dagScheduler.handleJobGroupCancelled(groupId)
- case AllJobsCancelled =>
- dagScheduler.doCancelAllJobs()
- case ExecutorAdded(execId, host) =>
- dagScheduler.handleExecutorAdded(execId, host)
- case ExecutorLost(execId) =>
- dagScheduler.handleExecutorLost(execId, fetchFailed = false)
- case BeginEvent(task, taskInfo) =>
- dagScheduler.handleBeginEvent(task, taskInfo)
- case GettingResultEvent(taskInfo) =>
- dagScheduler.handleGetTaskResult(taskInfo)
- case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
- dagScheduler.handleTaskCompletion(completion)
- case TaskSetFailed(taskSet, reason, exception) =>
- dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
- case ResubmitFailedStages =>
- dagScheduler.resubmitFailedStages()
- }
对于JobSubmitted事件,我们通过调用DAGScheduler的handleJobSubmitted()方法来处理。
好了,到这里,第一阶段Job的调度模型与运行反馈大体已经分析完了,至于后面的第二、第三阶段,留待后续博文继续分析吧~
博客原地址:http://blog.csdn.net/lipeng_bigdata/article/details/50667966
以上是关于Spark源码分析之二:Job的调度模型与运行反馈的主要内容,如果未能解决你的问题,请参考以下文章
深入理解spark-taskScheduler,schedulerBackend源码分析