纯MATLAB版本 SIFT代码
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了纯MATLAB版本 SIFT代码相关的知识,希望对你有一定的参考价值。
先贴几个链接:
http://blog.csdn.net/abcjennifer/article/details/7639681 Rachel-Zhang的
http://blog.csdn.net/manji_lee/article/details/8922474
David G. Lowe的两篇标志性的文章分别叫 Object recognition from local scale-invariant features 和
Distinctive Image Features from Scale-Invariant Keypoints
其实我就是想在博客里保存下网上下载的纯MATLAB版本的sift代码
%% 功能:提取灰度图像的尺度不变特征(SIFT特征) % 输入: % im - 灰度图像,该图像的灰度值在0到1之间(注意:应首先对输入图像的灰度值进行归一化处理) % octaves - 金字塔的组数:octaves (默认值为4). % intervals - 该输入参数决定每组金字塔的层数(默认值为 2). % object_mask - 确定图像中尺度不变特征点的搜索区域,如果没有特别指出,则算法将搜索整个图像 % contrast_threshold - 对比度阈值(默认值为0.03). % curvature_threshold - 曲率阈值(默认值为10.0). % interactive - 函数运行显示标志,将其设定为1,则显示算法运行时间和过程的相关信息; % 如果将其设定为2,则仅显示最终运行结果(default = 1). % % 输出: % pos - Nx2 矩阵,每一行包括尺度不变特征点的坐标(x,y) % scale - Nx3 矩阵,每一行包括尺度不变特征点的尺度信息 % (第一列是尺度不变特征点所在的组, % 第二列是其所在的层, % 第三列是尺度不变特征点的sigma). % orient - Nx1 向量,每个元素是特征点的主方向,其范围在 [-pi,pi)之间. % desc - N x 128 矩阵,每一行包含特征点的特征向量. %% 步骤0:载入图像后归一化,并扩充成 2xN-1 大小 % 用于彻底搞懂SIFT的MATLAB版本代码的一个测试文件 clear all;clc;close all; % im = rgb2gray(imread(‘nest.png‘)); im = imread(‘nest.png‘); im = scjMatMap(im,0,1); antialias_sigma = 0.5; signal = im; [X Y] = meshgrid( 1:0.5:size(signal,2), 1:0.5:size(signal,1) ); signal = interp2( signal, X, Y, ‘*linear‘ ); % im被扩充成 2 x N - 1 了 subsample = [0.5]; % 降采样率 %% 步骤1:生成高斯和差分高斯(DOG)金字塔 % 这两个金字塔的数据分别存储在名为 % gauss_pyr{orient,interval}和DOG_pyr{orient,interval} % 的元胞数组中。高斯金字塔含有s+3层,差分高斯金字塔含有s+2层。 preblur_sigma = sqrt(sqrt(2)^2 - (2*antialias_sigma)^2); g = gaussian_filter( preblur_sigma ); gauss_pyr{1,1} = conv2( g, g, signal, ‘same‘ ); clear signal; % 完成了初始化工作 % 第一组第一层的sigma initial_sigma = sqrt( (2*antialias_sigma)^2 + preblur_sigma^2 ); octaves = 4; % 有4层金字塔 intervals = 2; % 每一层有2张图片 s+3 % 之所以+3,是因为:生成DOG时会减少一个图片,在计算极值的时候 % 第一个和最后一个图片不能使用,所以要+3. % 为了保证差分高斯金字塔DOG在每一层至少有一张图片可用来寻找极值点 % 必须让高斯金字塔有+3张图片 % 最后会有octaves层,每层intervals+3张图片 % 记录每一层和每一个尺度的sigma absolute_sigma = zeros(octaves,intervals+3); absolute_sigma(1,1) = initial_sigma * subsample(1); % 记录产生金字塔的滤波器的尺寸和标准差 filter_size = zeros(octaves,intervals+3); filter_sigma = zeros(octaves,intervals+3); % 生成高斯和差分高斯金字塔 for octave = 1:octaves sigma = initial_sigma; g = gaussian_filter(sigma); filter_size(octave,1) = length(g); filter_sigma(octave,1) = sigma; DOG_pyr{octave} = ... zeros(size(gauss_pyr{octave,1},1),size(gauss_pyr{octave,1},2),intervals+2); for interval = 2:(intervals+3) sigma_f = sqrt(2^(2/intervals) - 1)*sigma; g = gaussian_filter( sigma_f ); sigma = (2^(1/intervals))*sigma; % 记录sigma的值 absolute_sigma(octave,interval) = sigma * subsample(octave); % 记录滤波器的尺寸和标准差 filter_size(octave,interval) = length(g); filter_sigma(octave,interval) = sigma; gauss_pyr{octave,interval} = conv2(g,g,gauss_pyr{octave,interval-1}, ‘same‘ ); DOG_pyr{octave}(:,:,interval-1) = ... gauss_pyr{octave,interval} - gauss_pyr{octave,interval-1}; end if octave < octaves sz = size(gauss_pyr{octave,intervals+1}); [X Y] = meshgrid( 1:2:sz(2), 1:2:sz(1) ); gauss_pyr{octave+1,1} = interp2(gauss_pyr{octave,intervals+1},X,Y,‘*nearest‘); absolute_sigma(octave+1,1) = absolute_sigma(octave,intervals+1); subsample = [subsample subsample(end)*2]; end end %% 步骤2:查找差分高斯金字塔中的局部极值,并通过曲率和照度进行检验 contrast_threshold = 0.02; curvature_threshold = 10.0; curvature_threshold = ((curvature_threshold + 1)^2)/curvature_threshold; % 二阶微分核 xx = [ 1 -2 1 ]; yy = xx‘; xy = [1 0 -1; 0 0 0; -1 0 1]/4; raw_keypoints = []; contrast_keypoints = []; curve_keypoints = []; object_mask = ones(size(im)); % 在高斯金字塔中查找局部极值 loc = cell(size(DOG_pyr)); for octave = 1:octaves for interval = 2:(intervals+1) keypoint_count = 0; contrast_mask = abs(DOG_pyr{octave}(:,:,interval)) >= contrast_threshold; loc{octave,interval} = zeros(size(DOG_pyr{octave}(:,:,interval))); edge = ceil(filter_size(octave,interval)/2); for y=(1+edge):(size(DOG_pyr{octave}(:,:,interval),1)-edge) for x=(1+edge):(size(DOG_pyr{octave}(:,:,interval),2)-edge) if object_mask(round(y*subsample(octave)),round(x*subsample(octave))) == 1 interactive = 1; if( (interactive >= 2) | (contrast_mask(y,x) == 1) ) % 注意! % 通过空间核尺度检测最大值和最小值 tmp = DOG_pyr{octave}((y-1):(y+1),(x-1):(x+1),(interval-1):(interval+1)); pt_val = tmp(2,2,2); if( (pt_val == min(tmp(:))) | (pt_val == max(tmp(:))) ) % 存储对灰度大于对比度阈值的点的坐标 raw_keypoints = [raw_keypoints; x*subsample(octave) y*subsample(octave)]; if abs(DOG_pyr{octave}(y,x,interval)) >= contrast_threshold contrast_keypoints = [contrast_keypoints; raw_keypoints(end,:)]; % 计算局部极值的Hessian矩阵 Dxx = sum(DOG_pyr{octave}(y,x-1:x+1,interval) .* xx); Dyy = sum(DOG_pyr{octave}(y-1:y+1,x,interval) .* yy); Dxy = sum(sum(DOG_pyr{octave}(y-1:y+1,x-1:x+1,interval) .* xy)); % 计算Hessian矩阵的直迹和行列式. Tr_H = Dxx + Dyy; Det_H = Dxx*Dyy - Dxy^2; % 计算主曲率. curvature_ratio = (Tr_H^2)/Det_H; if ((Det_H >= 0) & (curvature_ratio < curvature_threshold)) % 存储主曲率小于阈值的的极值点的坐标(非边缘点) curve_keypoints = [curve_keypoints; raw_keypoints(end,:)]; % 将该点的位置的坐标设为1,并计算点的数量. loc{octave,interval}(y,x) = 1; keypoint_count = keypoint_count + 1; end end end end end end end fprintf( 2, ‘%d keypoints found on interval %d\n‘, keypoint_count, interval ); end end clear raw_keypoints contrast_keypoints curve_keypoints; %% 步骤3:计算特征点的主方向. % 在特征点的一个区域内计算其梯度直方图 g = gaussian_filter( 1.5 * absolute_sigma(1,intervals+3) / subsample(1) ); zero_pad = ceil( length(g) / 2 ); % 计算高斯金字塔图像的梯度方向和幅值 mag_thresh = zeros(size(gauss_pyr)); mag_pyr = cell(size(gauss_pyr)); grad_pyr = cell(size(gauss_pyr)); for octave = 1:octaves for interval = 2:(intervals+1) % 计算x,y的差分 diff_x = 0.5*(gauss_pyr{octave,interval}(2:(end-1),3:(end))-gauss_pyr{octave,interval}(2:(end-1),1:(end-2))); diff_y = 0.5*(gauss_pyr{octave,interval}(3:(end),2:(end-1))-gauss_pyr{octave,interval}(1:(end-2),2:(end-1))); % 计算梯度幅值 mag = zeros(size(gauss_pyr{octave,interval})); mag(2:(end-1),2:(end-1)) = sqrt( diff_x .^ 2 + diff_y .^ 2 ); % 存储高斯金字塔梯度幅值 mag_pyr{octave,interval} = zeros(size(mag)+2*zero_pad); mag_pyr{octave,interval}((zero_pad+1):(end-zero_pad),(zero_pad+1):(end-zero_pad)) = mag; % 计算梯度主方向 grad = zeros(size(gauss_pyr{octave,interval})); grad(2:(end-1),2:(end-1)) = atan2( diff_y, diff_x ); grad(find(grad == pi)) = -pi; % 存储高斯金字塔梯度主方向 grad_pyr{octave,interval} = zeros(size(grad)+2*zero_pad); grad_pyr{octave,interval}((zero_pad+1):(end-zero_pad),(zero_pad+1):(end-zero_pad)) = grad; end end clear mag grad %% 步骤4:确定特征点的主方向 % 方法:通过寻找每个关键点的子区域内梯度直方图的峰值(注:每个关键点的主方向可以有不止一个) % 将灰度直方图分为36等分,每隔10度一份 num_bins = 36; hist_step = 2*pi/num_bins; % 步进值 hist_orient = [-pi:hist_step:(pi-hist_step)]; % 步进方向 % 初始化关键点的位置、方向和尺度信息 pos = []; orient = []; scale = []; % 给关键点确定主方向 for octave = 1:octaves for interval = 2:(intervals + 1) keypoint_count = 0; % 构造高斯加权掩模 g = gaussian_filter( 1.5 * absolute_sigma(octave,interval)/subsample(octave) ); hf_sz = floor(length(g)/2); g = g‘*g; loc_pad = zeros(size(loc{octave,interval})+2*zero_pad); loc_pad((zero_pad+1):(end-zero_pad),(zero_pad+1):(end-zero_pad)) = loc{octave,interval}; [iy ix]=find(loc_pad==1); for k = 1:length(iy) x = ix(k); y = iy(k); wght = g.*mag_pyr{octave,interval}((y-hf_sz):(y+hf_sz),(x-hf_sz):(x+hf_sz)); grad_window = grad_pyr{octave,interval}((y-hf_sz):(y+hf_sz),(x-hf_sz):(x+hf_sz)); orient_hist=zeros(length(hist_orient),1); for bin=1:length(hist_orient) diff = mod( grad_window - hist_orient(bin) + pi, 2*pi ) - pi; orient_hist(bin) = ... orient_hist(bin)+sum(sum(wght.*max(1 - abs(diff)/hist_step,0))); end % 运用非极大抑制法查找主方向直方图的峰值 peaks = orient_hist; rot_right = [ peaks(end); peaks(1:end-1) ]; rot_left = [ peaks(2:end); peaks(1) ]; peaks( find(peaks < rot_right) ) = 0; peaks( find(peaks < rot_left) ) = 0; % 提取最大峰值的值和其索引位置 [max_peak_val ipeak] = max(peaks); % 将大于等于最大峰值80% 的直方图的也确定为特征点的主方向 peak_val = max_peak_val; while( peak_val > 0.8*max_peak_val ) % 最高峰值最近的三个柱值通过抛物线插值精确得到 A = []; b = []; for j = -1:1 A = [A; (hist_orient(ipeak)+hist_step*j).^2 (hist_orient(ipeak)+hist_step*j) 1]; bin = mod( ipeak + j + num_bins - 1, num_bins ) + 1; b = [b; orient_hist(bin)]; end c = pinv(A)*b; max_orient = -c(2)/(2*c(1)); while( max_orient < -pi ) max_orient = max_orient + 2*pi; end while( max_orient >= pi ) max_orient = max_orient - 2*pi; end % 存储关键点的位置、主方向和尺度信息 pos = [pos; [(x-zero_pad) (y-zero_pad)]*subsample(octave) ]; orient = [orient; max_orient]; scale = [scale; octave interval absolute_sigma(octave,interval)]; keypoint_count = keypoint_count + 1; peaks(ipeak) = 0; [peak_val ipeak] = max(peaks); end end fprintf( 2, ‘(%d keypoints)\n‘, keypoint_count ); end end clear loc loc_pad %% 步骤5:特征向量生成 orient_bin_spacing = pi/4; orient_angles = [-pi:orient_bin_spacing:(pi-orient_bin_spacing)]; grid_spacing = 4; [x_coords y_coords] = meshgrid( [-6:grid_spacing:6] ); feat_grid = [x_coords(:) y_coords(:)]‘; [x_coords y_coords] = meshgrid( [-(2*grid_spacing-0.5):(2*grid_spacing-0.5)] ); feat_samples = [x_coords(:) y_coords(:)]‘; feat_window = 2*grid_spacing; desc = []; for k = 1:size(pos,1) x = pos(k,1)/subsample(scale(k,1)); y = pos(k,2)/subsample(scale(k,1)); % 将坐标轴旋转为关键点的方向,以确保旋转不变性 M = [cos(orient(k)) -sin(orient(k)); sin(orient(k)) cos(orient(k))]; feat_rot_grid = M*feat_grid + repmat([x; y],1,size(feat_grid,2)); feat_rot_samples = M*feat_samples + repmat([x; y],1,size(feat_samples,2)); % 初始化特征向量. feat_desc = zeros(1,128); for s = 1:size(feat_rot_samples,2) x_sample = feat_rot_samples(1,s); y_sample = feat_rot_samples(2,s); % 在采样位置进行梯度插值 [X Y] = meshgrid( (x_sample-1):(x_sample+1), (y_sample-1):(y_sample+1) ); G = interp2( gauss_pyr{scale(k,1),scale(k,2)}, X, Y, ‘*linear‘ ); % 耗时太长 G(find(isnan(G))) = 0; diff_x = 0.5*(G(2,3) - G(2,1)); diff_y = 0.5*(G(3,2) - G(1,2)); mag_sample = sqrt( diff_x^2 + diff_y^2 ); grad_sample = atan2( diff_y, diff_x ); if grad_sample == pi grad_sample = -pi; end % 计算x、y方向上的权重 x_wght = max(1 - (abs(feat_rot_grid(1,:) - x_sample)/grid_spacing), 0); y_wght = max(1 - (abs(feat_rot_grid(2,:) - y_sample)/grid_spacing), 0); pos_wght = reshape(repmat(x_wght.*y_wght,8,1),1,128); diff = mod( grad_sample - orient(k) - orient_angles + pi, 2*pi ) - pi; orient_wght = max(1 - abs(diff)/orient_bin_spacing,0); orient_wght = repmat(orient_wght,1,16); % 计算高斯权重 g = exp(-((x_sample-x)^2+(y_sample-y)^2)/(2*feat_window^2))/(2*pi*feat_window^2); feat_desc = feat_desc + pos_wght.*orient_wght*g*mag_sample; end % 将特征向量的长度归一化,则可以进一步去除光照变化的影响. feat_desc = feat_desc / norm(feat_desc); feat_desc( find(feat_desc > 0.2) ) = 0.2; feat_desc = feat_desc / norm(feat_desc); % 存储特征向量. desc = [desc; feat_desc]; tmp = mod(k,25); if ( tmp == 0 ) fprintf( 2, ‘.‘ ); end end % 调整采样偏差 sample_offset = -(subsample - 1); for k = 1:size(pos,1) pos(k,:) = pos(k,:) + sample_offset(scale(k,1)); end if size(pos,1) > 0 scale = scale(:,3); end hh = display_keypoints( pos, scale, orient);
调用了
function g = gaussian_filter(sigma) % 功能:生成一维高斯滤波器 % 输入: % sigma – 高斯滤波器的标准差 % 输出: % g – 高斯滤波器 sample = 7.0/2.0; n = 2*round(sample * sigma)+1; x = 1:n; x = x - ceil(n/2); g = exp(-(x.^2)/(2*sigma^2))/(sigma*sqrt(2*pi));
原作者是Xiaochuan ZHAO 邮箱:[email protected]
我去除了他的代码中一些无关紧要的部分。
以上是关于纯MATLAB版本 SIFT代码的主要内容,如果未能解决你的问题,请参考以下文章
MATLAB教程案例26图像特征点提取算法matlab仿真与分析——sift,surf,kaze,corner,BRISK等