数据结构与算法问题 二叉搜索树
Posted brucemengbm
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构与算法问题 二叉搜索树相关的知识,希望对你有一定的参考价值。
1、序
具体实现了二叉查找树的各种操作:插入结点、构造二叉树、删除结点、查找、 查找最大值、查找最小值、查找指定结点的前驱和后继
2、二叉查找树简单介绍
它或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上全部结点的值均小于它的根结点的值。 (2)若右子树不空。则右子树上全部结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树
3、二叉查找树的各种操作
此处给出代码。凝视很具体。具体操作请參考代码:
#include <iostream> using namespace std; typedef struct Binary_Search_Tree //结点结构体 { int data; Binary_Search_Tree * lchild; Binary_Search_Tree * rchild; Binary_Search_Tree * parent; }Binary_Search_Tree ; void insert(Binary_Search_Tree * & root,int data) //插入 { Binary_Search_Tree * p=new Binary_Search_Tree; p->data=data; p->lchild=p->rchild=p->parent=NULL; if(root==NULL) //假设为空树。即插入结点为根结点 { root=p; return ; } //插入到当前父节点的右节点 if(root->rchild==NULL&&root->data<data) { root->rchild=p; p->parent=root; return ; } //插入到当前父结点的左节点 if(root->lchild==NULL&&root->data>data) { p->parent=root; root->lchild=p; return ; } if(root->data>data) insert(root->lchild,data); else if(root->data < data) insert(root->rchild,data); else return; } void create(Binary_Search_Tree * & root,int a[],int size) { root=NULL; for(int i=0;i<size;i++) insert(root,a[i]); } //查找元素,找到返回keyword的结点指针,没找到则返回NULL Binary_Search_Tree * search(Binary_Search_Tree * &root,int data) { if(root==NULL) return NULL; if(data<root->data) return search(root->lchild,data); else if(data>root->data) return search(root->rchild,data); else return root; } //递归方式找到最小的元素 Binary_Search_Tree * searchmin(Binary_Search_Tree * &root) { if(root==NULL) return NULL; if(root->lchild==NULL) return root; else return searchmin(root->lchild); } //递归方式寻找最大的元素 Binary_Search_Tree * searchmax(Binary_Search_Tree * &root) { if(root==NULL) return NULL; if(root->rchild==NULL) return root; else return searchmax(root->rchild); } //查找某个节点的前驱 Binary_Search_Tree * seachpredecessor(Binary_Search_Tree * & p) { //空树 if(p=NULL) return p; if(p->lchild) return searchmax(p->lchild); //无左子树,查找某个结点的右字树遍历完了 else { if(p->lchild==NULL) return NULL; //向上寻找前驱 while(p) { if(p->parent->rchild==p) break; } return p->parent; } } //查找某个元素的后继 Binary_Search_Tree * searchsuccessor(Binary_Search_Tree * & p) { if(p==NULL) return p; if(p->rchild) return searchmin(p->rchild); else { if(p->rchild==NULL) return NULL; //向上寻找后继 while(p) { if(p->parent->lchild==p) break; } return p->parent; } } //依据keyword删除某个结点 //假设把根结点删掉。那么要改变根结点的地址,所以传二级指针 void deletetree(Binary_Search_Tree * & root,int data) { Binary_Search_Tree *q; Binary_Search_Tree *p=search(root,data); if(!p) return ; //假设没有左,右子结点,则直接删除 if(p->lchild==NULL&&p->rchild==NULL) { if(p->parent==NULL) { delete p; root=NULL; } else { if(p==p->parent->lchild) p->parent->lchild=NULL; else p->parent->rchild=NULL; delete p; } } //假设有左结点,没有右结点 if(p->lchild&&!(p->rchild)) { p->lchild->parent=p->parent; if(p->parent==NULL) root=p->lchild; else if(p==p->parent->lchild) p->parent->lchild=p->lchild; else p->parent->rchild=p->lchild; delete p; } //假设有右结点。没有左结点 else if(p->rchild&&!(p->lchild)) { p->rchild->parent=p->parent; if(p->parent==NULL) root=p->rchild; else if(p->parent->lchild==p) p->parent->lchild=p->rchild; else p->parent->rchild=p->rchild; delete p; } //假设既有左结点,又有右结点 else if(p->rchild&&p->lchild) { if(p->parent==NULL) root=p->rchild; if(p->parent->lchild==p) p->parent->lchild=p->rchild; else if(p->parent->rchild==p) p->parent->rchild=p->lchild; delete p; } else { //找到要删除点的后继 q=searchsuccessor(p); int temp=q->data; //删除后继节点 deletetree(root,q->data); p->data=temp; } } int main() { Binary_Search_Tree * root=NULL; int a[12]={15,1,21,3,7,17,20,2,4,13,9}; create(root,a,11); Binary_Search_Tree * x=new Binary_Search_Tree; deletetree(root,21); //删除结点21 x=searchmin(root); cout<<x->data; cout<<endl; x=searchmax(root); cout<<x->data; cout<<endl; return 0; }
以上是关于数据结构与算法问题 二叉搜索树的主要内容,如果未能解决你的问题,请参考以下文章
数据结构与算法之深入解析“二叉搜索树中的插入操作”的求解思路与算法示例