有向图的十字链表存储形式
Posted slgkaifa
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了有向图的十字链表存储形式相关的知识,希望对你有一定的参考价值。
十字链表是有向图的还有一种链式存储结构。能够看成是将有向图的邻接表和逆邻接表(仅仅考虑入度)结合起来得到的一种链表。在十字链表中,相应于有向图中每个顶点有一个节点,每一条弧也有一个结点。
測试:
顶点之间是数组顺序存储,而弧是链式存储。
弧结点结构:
顶点结点结构:
十字链表形态:
实现:
/*********************************************** 有向图的存储形式——十字链表 by Rowandjj 2014/6/27 ***********************************************/ #include<iosTREAM> using namespace std; #define MAX_VERTEX_NUM 20//顶点最大长度 #define MAX_INFO 20//弧信息的最大长度 typedef struct _ARCBOX_//弧结点 { int tailvex,headvex;//该弧的尾和头顶点的位置 struct _ARCBOX_ *hlink,*tlink;//分别为弧头同样和弧尾同样的弧的链域 char *info; }ArcBox; typedef struct _VEXNODE_//顶点 { char data;//顶点名称 ArcBox *firstin,*firstout; }VexNode; typedef struct _OLGRAPH_//图 { VexNode xlist[MAX_VERTEX_NUM];//表头向量(数组) int vexnum,arcnum;//顶点数目,弧数目 }OLGraph; //------------------操作定义--------------------------------- int LocateVex(OLGraph G,char u);//返回顶点u在有向图G中的位置(序号),如不存在则返回-1 bool CreateDG(OLGraph* G);//採用十字链表存储表示,构造有向图G void Display(OLGraph G);//输出有向图G void DestroyGraph(OLGraph* G);//销毁有向图G char GetVex(OLGraph G,int v);//返回v的值 bool PutVex(OLGraph* G,char v,char value);//对v赋新值value int FirstAdjVex(OLGraph G,char v);//返回v的第一个邻接顶点的序号。若顶点在G中没有邻接顶点,则返回-1 int NextAdjVex(OLGraph G,char v,char w);//返回v的(相对于w的)下一个邻接顶点的序号,若w是v的最后一个邻接顶点,则返回-1 void InsertVex(OLGraph* G,char v);//在有向图G中增添新顶点v(不增添与顶点相关的弧,留待InsertArc()去做) bool DeleteVex(OLGraph* G,char v);//删除G中顶点v及其相关的弧 bool InsertArc(OLGraph* G,char v,char w);//在G中增添弧<v,w> bool DeleteArc(OLGraph* G,char v,char w);//在G中删除弧<v,w> void DFSTravel(OLGraph G,void (*Visit)(char)); void DFS(OLGraph G,int v); void BFSTravel(OLGraph G,void (*Visit)(char)); void (*VisitFunc)(char); //全局函数指针 bool visited[MAX_VERTEX_NUM]; /* 訪问标志数组(全局量) */ //----------------------------------------------------------- void Visit(char p) { cout<<p<<" "; } //辅助队列 typedef struct _QUEUENODE_ { int data; struct _QUEUENODE_ *next; }QueueNode; typedef struct _QUEUE_ { QueueNode *pHead; QueueNode *pTail; int size; }Queue; bool InitQueue(Queue *Q); bool DestroyQueue(Queue *Q); bool DeQueue(Queue *Q,int* e); bool EnQueue(Queue *Q, int e); bool QueueEmpty(Queue Q); //----------------------------------------------------------- bool InitQueue(Queue *Q) { Q->pHead = Q->pTail = (QueueNode*)malloc(sizeof(QueueNode)); if(!Q->pHead) { return false; } Q->pHead->next = NULL; Q->size = 0; return true; } bool EnQueue(Queue *Q, int e) { QueueNode *newNode = (QueueNode *)malloc(sizeof(QueueNode)); if(!newNode) { return false; } newNode->data = e; newNode->next = NULL; Q->pTail->next = newNode; Q->pTail = newNode; Q->size++; return true; } bool DeQueue(Queue *Q,int* e) { QueueNode *pDel = Q->pHead->next; if(!pDel) { return false; } *e = pDel->data; if(Q->pTail == pDel) { Q->pTail = Q->pHead; } Q->pHead->next = pDel->next; free(pDel); Q->size--; return true; } bool QueueEmpty(Queue Q) { return Q.size == 0; } bool DestroyQueue(Queue *Q) { QueueNode *p,*q; p = Q->pHead->next; while(p) { q = p->next; free(p); p = q; } free(Q->pHead); Q->pHead = NULL; Q->size = 0; return true; } //----------------------------------------------------------- int LocateVex(OLGraph G,char u) { int i; for(i = 0; i < G.vexnum; i++)//用循环查找该结点 { if(u == G.xlist[i].data) { return i; } } return -1; } bool CreateDG(OLGraph* G) { int i,j,k; int IncInfo;//弧是否包括其它信息 ArcBox *pArc; char v1,v2;//弧尾、弧头 char str[MAX_INFO];//弧的相关信息 cout<<"请输入有向图的顶点数,弧数,弧是否含其它信息(是:1,否:0):"; cin>>G->vexnum; cin>>G->arcnum; cin>>IncInfo; cout<<"请依次输入顶点的值"<<endl; for(i = 0; i < G->vexnum; i++) { cin>>G->xlist[i].data; G->xlist[i].firstin = NULL; G->xlist[i].firstout = NULL; } cout<<"请输入每条弧弧尾和弧头的值"<<endl; for(k = 0; k < G->arcnum; k++)//输入各弧并构造十字链表 { //注意:假设i------>j 则代表i为弧尾,或者起始点。j代表弧头,又叫终端点 cin>>v1;//输入弧尾(起始点) cin>>v2;//输入弧头(终端点) pArc = (ArcBox *)malloc(sizeof(ArcBox)); //得到弧尾和弧头的位置 i = LocateVex(*G,v1);//弧尾的位置 j = LocateVex(*G,v2);//弧头的位置 if(i == -1 || j == -1) { return false; } pArc->tailvex = i; pArc->headvex = j; pArc->tlink = G->xlist[i].firstout; pArc->hlink = G->xlist[j].firstin; G->xlist[i].firstout = pArc; G->xlist[j].firstin = pArc; if(IncInfo) { cout<<"输入弧的相关信息:"<<endl; cin>>str; pArc->info = (char *)malloc(sizeof(char)*(strlen(str)+1)); strcpy(pArc->info,str); }else { pArc->info = NULL; } } return true; } void Display(OLGraph G) { int i; ArcBox *pArc; cout<<"顶点个数"<<G.vexnum<<",弧个数"<<G.arcnum<<endl; cout<<"顶点"; for(i = 0; i < G.vexnum; i++) { cout<<G.xlist[i].data<<" "; } cout<<endl; for(i = 0; i < G.vexnum; i++) { cout<<"顶点:"<<G.xlist[i].data<<"入度:";//弧头同样 pArc = G.xlist[i].firstin; while(pArc) { cout<<G.xlist[pArc->tailvex].data<<" "; pArc = pArc->hlink; } cout<<"出度:"; pArc = G.xlist[i].firstout; while(pArc) { cout<<G.xlist[pArc->headvex].data<<" "; if(pArc->info) { cout<<pArc->info<<" "; } pArc = pArc->tlink; } cout<<endl; } } void DestroyGraph(OLGraph* G) { int i; ArcBox *pArc1,*pArc2; for(i = 0 ; i < G->vexnum; i++) { pArc1 = G->xlist[i].firstout; while(pArc1) { pArc2 = pArc1->tlink; if(pArc1->info) { free(pArc1->info); } free(pArc1); pArc1 = pArc2; } } } char GetVex(OLGraph G,int v) { if(v < 0 || v >= G.vexnum) { exit(0); } return G.xlist[v].data; } bool PutVex(OLGraph* G,char v,char value) { int i = LocateVex(*G,v); if(i < 0) { return false; } G->xlist[i].data = value; return true; } int FirstAdjVex(OLGraph G,char v) { int i; i = LocateVex(G,v); ArcBox *p = G.xlist[i].firstout; if(p) { return p->headvex; }else { return -1; } } int NextAdjVex(OLGraph G,char v,char w) { int i,j; ArcBox *pArc; i = LocateVex(G,v); j = LocateVex(G,w); pArc = G.xlist[i].firstout; while(pArc && pArc->headvex!=j) { pArc = pArc->tlink; } if(pArc) { pArc = pArc->tlink; } if(pArc) { return pArc->headvex; }else { return -1; } } void InsertVex(OLGraph* G,char v) { G->xlist[G->vexnum].data = v; G->xlist[G->vexnum].firstin = G->xlist[G->vexnum].firstout = NULL; G->vexnum++; } bool DeleteVex(OLGraph* G,char v) { int j,k; ArcBox *p,*q; k = LocateVex(*G,v); if(k < 0) { return false; } //1.删除v的出弧 //1.1v的出弧也就是其它顶点的入弧,我们须要在其它弧的入弧链表中删除v的出弧 for(j = 0; j < G->vexnum; j++) { if(j == k) { continue; } p = G->xlist[j].firstin; while(p) { if(k == p->tailvex && p == G->xlist[j].firstin)//假设待删结点为首结点 { G->xlist[j].firstin = p->hlink; break; }else if(k != p->tailvex)//当前结点不是待删结点 { q = p; p = p->hlink; }else//待删结点不是首节点 { q->hlink = p->hlink; break; } } } //1.2删除v的出弧 p = G->xlist[k].firstout; while(p) { q = p->tlink; if(p->info) { free(p->info); } free(p); G->arcnum--; p = q; } //2.删除顶点v的入弧 //2.1顶点v的入弧也就是其它顶点的出弧。我们须要在其它弧的出弧链表中删除v的入弧 for(j = 0; j < G->vexnum; j++) { if(j == k) { continue; } p = G->xlist[j].firstout; while(p) { if(k == p->headvex && p == G->xlist[j].firstout) { G->xlist[j].firstout = p->tlink; break; }else if(k != p->headvex) { q = p; p = p->tlink; }else { q->tlink = p->tlink; break; } } } //2.2删除顶点v的入弧 p = G->xlist[k].firstin; while(p) { q = p->hlink; if(p->info) { free(p->info); } free(p); p = q; G->arcnum--; } //3.序号>k的顶点依次向前移 for(j = k+1; j < G->vexnum; j++) { G->xlist[j-1] = G->xlist[j]; } G->vexnum--; //4.结点序号>k的要减1 for(j = 0; j < G->vexnum; j++) { p = G->xlist[j].firstout; while(p) { if(p->headvex > k) { p->headvex--; } if(p->tailvex > k) { p->tailvex--; } p = p->tlink; } } return true; } bool InsertArc(OLGraph* G,char v,char w) { int IncInfo; char str[MAX_INFO]; int i,j; ArcBox *pArc; i = LocateVex(*G,v);//弧尾 j = LocateVex(*G,w);//弧头 if(i < 0 || j < 0) { return false; } pArc = (ArcBox *)malloc(sizeof(ArcBox)); pArc->tailvex = i; pArc->headvex = j; pArc->tlink = G->xlist[i].firstout; pArc->hlink = G->xlist[j].firstin; G->xlist[i].firstout = pArc; G->xlist[j].firstin = pArc; G->arcnum++; cout<<"要插入的弧是否含有其它信息(是: 1,否: 0):"; cin>>IncInfo; if(IncInfo) { cout<<"输入弧信息:"; cin>>str; pArc->info = (char *)malloc(sizeof(char)*(strlen(str)+1)); strcpy(pArc->info,str); }else { pArc->info = NULL; } return true; } bool DeleteArc(OLGraph* G,char v,char w) { int i,j; ArcBox *p,*q; i = LocateVex(*G,v); j = LocateVex(*G,w); if(i < 0 || j < 0) { return false; } //先删除顶点v出弧 p = G->xlist[i].firstout; if(p && p->headvex == j)//待删结点为首节点 { G->xlist[i].firstout = p->tlink; } else { while(p && p->headvex != j) { q = p; p = p->tlink; } if(p) { q->tlink = p->tlink; } } //删除顶点w的入弧 p = G->xlist[j].firstin; if(p && p->tailvex == i) { G->xlist[j].firstin = p->hlink; }else { while(p && p->tailvex != i) { q = p; p = p->hlink; } if(p) { q->hlink = p->hlink; } } if(p->info) { free(p->info); } G->arcnum--; return true; } void DFS(OLGraph G,int v) { int i; char v1,w1; v1 = GetVex(G,v); visited[v] = true; VisitFunc(v1); for(i = FirstAdjVex(G,v1);i>=0;i = NextAdjVex(G,v1,w1 = GetVex(G,i))) { if(!visited[i]) { DFS(G,i); } } } void DFSTravel(OLGraph G,void (*Visit)(char)) { int i; for(i = 0; i < G.vexnum; i++) { visited[i] = false; } VisitFunc = Visit; for(i = 0; i < G.vexnum; i++) { if(!visited[i]) { DFS(G,i); } } } void BFSTravel(OLGraph G,void (*Visit)(char)) { int i,u,w; char u1,w1; Queue queue; InitQueue(&queue); for(i = 0; i < G.vexnum; i++) { visited[i] = false; } for(i = 0; i < G.vexnum; i++) { if(!visited[i]) { visited[i] = true; Visit(G.xlist[i].data); EnQueue(&queue,i); while(!QueueEmpty(queue)) { DeQueue(&queue,&u); u1 = GetVex(G,u); for(w = FirstAdjVex(G,u1);w>=0;w = NextAdjVex(G,u1,w1=GetVex(G,w))) { if(!visited[w]) { visited[w] = true; Visit(G.xlist[w].data); EnQueue(&queue,w); } } } } } } int main() { OLGraph graph; CreateDG(&graph); Display(graph); cout<<"广度优先"<<endl; BFSTravel(graph,Visit); cout<<"\n深度优先"<<endl; DFSTravel(graph,Visit); return 0; }
測试:
以上是关于有向图的十字链表存储形式的主要内容,如果未能解决你的问题,请参考以下文章
(王道408考研数据结构)第六章图-第二节1:图的存储结构(邻接矩阵邻接表十字链表和邻接多重表)