MySQL从入门到精通(九) MySQL锁,各种锁
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL从入门到精通(九) MySQL锁,各种锁相关的知识,希望对你有一定的参考价值。
参考技术A锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除传统的计算资源(CPU、RAM、I/O)争用外,数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性,有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,从这个角度来说,锁对数据库而言是尤其重要,也更加复杂。mysql中的锁,按照锁的粒度分为:1、全局锁,就锁定数据库中的所有表。2、表级锁,每次操作锁住整张表。3、行级锁,每次操作锁住对应的行数据。
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将阻塞。其典型的使用场景就是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。但是对数据库加全局锁是有弊端的,如在主库上备份,那么在备份期间都不能执行更新,业务会受影响,第二如果是在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志,会导致主从延迟。
解决办法是在innodb引擎中,备份时加上--single-transaction参数来完成不加锁的一致性数据备份。
添加全局锁: flush tables with read lock; 解锁 unlock tables。
表级锁,每次操作会锁住整张表.锁定粒度大,发送锁冲突的概率最高,并发读最低,应用在myisam、innodb、BOB等存储引擎中。表级锁分为: 表锁、元数据锁(meta data lock, MDL)和意向锁。
表锁又分为: 表共享读锁 read lock、表独占写锁write lock
语法: 1、加锁 lock tables 表名 ... read/write
2、释放锁 unlock tables 或者关闭客户端连接
注意: 读锁不会阻塞其它客户端的读,但是会阻塞其它客户端的写,写锁既会阻塞其它客户端的读,又会阻塞其它客户端的写。大家可以拿一张表来测试看看。
元数据锁,在加锁过程中是系统自动控制的,无需显示使用,在访问一张表的时候会自动加上,MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML和DDL冲突,保证读写的正确性。
在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作时,加MDL写锁(排他).
查看元数据锁:
select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema_metadata_locks;
意向锁,为了避免DML在执行时,加的行锁与表锁的冲突,在innodb中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。意向锁分为,意向共享锁is由语句select ... lock in share mode添加。意向排他锁ix,由insert,update,delete,select。。。for update 添加。
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_lock;
行级锁,每次操作锁住对应的行数据,锁定粒度最小,发生锁冲突的概率最高,并发读最高,应用在innodb存储引擎中。
innodb的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁,对于行级锁,主要分为以下三类:
1、行锁或者叫record lock记录锁,锁定单个行记录的锁,防止其他事物对次行进行update和delete操作,在RC,RR隔离级别下都支持。
2、间隙锁Gap lock,锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事物在这个间隙进行insert操作,产生幻读,在RR隔离级别下都支持。
3、临键锁Next-key-lock,行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap,在RR隔离级别下支持。
innodb实现了以下两种类型的行锁
1、共享锁 S: 允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
2、排他锁 X: 允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
insert 语句 排他锁 自动添加的
update语句 排他锁 自动添加
delete 语句 排他锁 自动添加
select 正常查询语句 不加锁 。。。
select 。。。lock in share mode 共享锁 需要手动在select 之后加lock in share mode
select 。。。for update 排他锁 需要手动在select之后添加for update
默认情况下,innodb在repeatable read事务隔离级别运行,innodb使用next-key锁进行搜索和索引扫描,以防止幻读。
间隙锁唯一目的是防止其它事务插入间隙,间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用的间隙锁。
java线程从入门到精通
(1)线程的简单应用
/* * 虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁, * 为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock。 * * Lock: * void lock(): 获取锁。 * void unlock():释放锁。 * ReentrantLock是Lock的实现类. */ public class SellTicketDemo { public static void main(String[] args) { // 创建资源对象 SellTicket st = new SellTicket(); // 创建三个窗口 Thread t1 = new Thread(st, "窗口1"); Thread t2 = new Thread(st, "窗口2"); Thread t3 = new Thread(st, "窗口3"); // 启动线程 t1.start(); t2.start(); t3.start(); } } import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SellTicket implements Runnable { // 定义票 private int tickets = 100; // 定义锁对象 private Lock lock = new ReentrantLock(); @Override public void run() { while (true) { try { // 加锁 lock.lock(); if (tickets > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "正在出售第" + (tickets--) + "张票"); } } finally { // 释放锁 lock.unlock(); } } } }
(2)死锁
public class MyLock { // 创建两把锁对象 public static final Object objA = new Object(); public static final Object objB = new Object(); } public class DieLock extends Thread { private boolean flag; public DieLock(boolean flag) { this.flag = flag; } @Override public void run() { if (flag) { synchronized (MyLock.objA) { System.out.println("if objA"); synchronized (MyLock.objB) { System.out.println("if objB"); } } } else { synchronized (MyLock.objB) { System.out.println("else objB"); synchronized (MyLock.objA) { System.out.println("else objA"); } } } } } /* * 同步的弊端: * A:效率低 * B:容易产生死锁 * * 死锁: * 两个或两个以上的线程在争夺资源的过程中,发生的一种相互等待的现象。 * * 举例: * 中国人,美国人吃饭案例。 * 正常情况: * 中国人:筷子两支 * 美国人:刀和叉 * 现在: * 中国人:筷子1支,刀一把 * 美国人:筷子1支,叉一把 */ public class DieLockDemo { public static void main(String[] args) { DieLock dl1 = new DieLock(true); DieLock dl2 = new DieLock(false); dl1.start(); dl2.start(); } }
(3)案例一
/* * 分析: * 资源类:Student * 设置学生数据:SetThread(生产者) * 获取学生数据:GetThread(消费者) * 测试类:StudentDemo * * 问题1:按照思路写代码,发现数据每次都是:null---0 * 原因:我们在每个线程中都创建了新的资源,而我们要求的时候设置和获取线程的资源应该是同一个 * 如何实现呢? * 在外界把这个数据创建出来,通过构造方法传递给其他的类。 * */ public class StudentDemo { public static void main(String[] args) { //创建资源 Student s = new Student(); //设置和获取的类 SetThread st = new SetThread(s); GetThread gt = new GetThread(s); //线程类 Thread t1 = new Thread(st); Thread t2 = new Thread(gt); //启动线程 t1.start(); t2.start(); } } public class Student { String name; int age; } public class SetThread implements Runnable { private Student s; public SetThread(Student s) { this.s = s; } @Override public void run() { // Student s = new Student(); s.name = "林青霞"; s.age = 27; } } public class GetThread implements Runnable { private Student s; public GetThread(Student s) { this.s = s; } @Override public void run() { // Student s = new Student(); System.out.println(s.name + "---" + s.age); } }
(4)
/* * 分析: * 资源类:Student * 设置学生数据:SetThread(生产者) * 获取学生数据:GetThread(消费者) * 测试类:StudentDemo * * 问题1:按照思路写代码,发现数据每次都是:null---0 * 原因:我们在每个线程中都创建了新的资源,而我们要求的时候设置和获取线程的资源应该是同一个 * 如何实现呢? * 在外界把这个数据创建出来,通过构造方法传递给其他的类。 * * 问题2:为了数据的效果好一些,我加入了循环和判断,给出不同的值,这个时候产生了新的问题 * A:同一个数据出现多次 * B:姓名和年龄不匹配 * 原因: * A:同一个数据出现多次 * CPU的一点点时间片的执行权,就足够你执行很多次。 * B:姓名和年龄不匹配 * 线程运行的随机性 * 线程安全问题: * A:是否是多线程环境 是 * B:是否有共享数据 是 * C:是否有多条语句操作共享数据 是 * 解决方案: * 加锁。 * 注意: * A:不同种类的线程都要加锁。 * B:不同种类的线程加的锁必须是同一把。 */ public class StudentDemo { public static void main(String[] args) { //创建资源 Student s = new Student(); //设置和获取的类 SetThread st = new SetThread(s); GetThread gt = new GetThread(s); //线程类 Thread t1 = new Thread(st); Thread t2 = new Thread(gt); //启动线程 t1.start(); t2.start(); } } public class Student { String name; int age; } public class SetThread implements Runnable { private Student s; private int x = 0; public SetThread(Student s) { this.s = s; } @Override public void run() { while (true) { synchronized (s) { if (x % 2 == 0) { s.name = "林青霞";//刚走到这里,就被别人抢到了执行权 s.age = 27; } else { s.name = "刘意"; //刚走到这里,就被别人抢到了执行权 s.age = 30; } x++; } } } } public class GetThread implements Runnable { private Student s; public GetThread(Student s) { this.s = s; } @Override public void run() { while (true) { synchronized (s) { System.out.println(s.name + "---" + s.age); } } } }
(5)
/* * 分析: * 资源类:Student * 设置学生数据:SetThread(生产者) * 获取学生数据:GetThread(消费者) * 测试类:StudentDemo * * 问题1:按照思路写代码,发现数据每次都是:null---0 * 原因:我们在每个线程中都创建了新的资源,而我们要求的时候设置和获取线程的资源应该是同一个 * 如何实现呢? * 在外界把这个数据创建出来,通过构造方法传递给其他的类。 * * 问题2:为了数据的效果好一些,我加入了循环和判断,给出不同的值,这个时候产生了新的问题 * A:同一个数据出现多次 * B:姓名和年龄不匹配 * 原因: * A:同一个数据出现多次 * CPU的一点点时间片的执行权,就足够你执行很多次。 * B:姓名和年龄不匹配 * 线程运行的随机性 * 线程安全问题: * A:是否是多线程环境 是 * B:是否有共享数据 是 * C:是否有多条语句操作共享数据 是 * 解决方案: * 加锁。 * 注意: * A:不同种类的线程都要加锁。 * B:不同种类的线程加的锁必须是同一把。 * * 问题3:虽然数据安全了,但是呢,一次一大片不好看,我就想依次的一次一个输出。 * 如何实现呢? * 通过Java提供的等待唤醒机制解决。 * * 等待唤醒: * Object类中提供了三个方法: * wait():等待 * notify():唤醒单个线程 * notifyAll():唤醒所有线程 * 为什么这些方法不定义在Thread类中呢? * 这些方法的调用必须通过锁对象调用,而我们刚才使用的锁对象是任意锁对象。 * 所以,这些方法必须定义在Object类中。 */ public class StudentDemo { public static void main(String[] args) { //创建资源 Student s = new Student(); //设置和获取的类 SetThread st = new SetThread(s); GetThread gt = new GetThread(s); //线程类 Thread t1 = new Thread(st); Thread t2 = new Thread(gt); //启动线程 t1.start(); t2.start(); } } public class Student { String name; int age; boolean flag; // 默认情况是没有数据,如果是true,说明有数据 } public class SetThread implements Runnable { private Student s; private int x = 0; public SetThread(Student s) { this.s = s; } @Override public void run() { while (true) { synchronized (s) { //判断有没有 if(s.flag){ try { s.wait(); //t1等着,释放锁 } catch (InterruptedException e) { e.printStackTrace(); } } if (x % 2 == 0) { s.name = "林青霞"; s.age = 27; } else { s.name = "刘意"; s.age = 30; } x++; //x=1 //修改标记 s.flag = true; //唤醒线程 s.notify(); //唤醒t2,唤醒并不表示你立马可以执行,必须还得抢CPU的执行权。 } //t1有,或者t2有 } } } public class GetThread implements Runnable { private Student s; public GetThread(Student s) { this.s = s; } @Override public void run() { while (true) { synchronized (s) { if(!s.flag){ try { s.wait(); //t2就等待了。立即释放锁。将来醒过来的时候,是从这里醒过来的时候 } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(s.name + "---" + s.age); //林青霞---27 //刘意---30 //修改标记 s.flag = false; //唤醒线程 s.notify(); //唤醒t1 } } } }
(6)
public class MyRunnable implements Runnable { @Override public void run() { for (int x = 0; x < 100; x++) { System.out.println(Thread.currentThread().getName() + ":" + x); } } } /* * 线程组: 把多个线程组合到一起。 * 它可以对一批线程进行分类管理,Java允许程序直接对线程组进行控制。 */ public class ThreadGroupDemo { public static void main(String[] args) { // method1(); // 我们如何修改线程所在的组呢? // 创建一个线程组 // 创建其他线程的时候,把其他线程的组指定为我们自己新建线程组 method2(); // t1.start(); // t2.start(); } private static void method2() { // ThreadGroup(String name) ThreadGroup tg = new ThreadGroup("这是一个新的组"); MyRunnable my = new MyRunnable(); // Thread(ThreadGroup group, Runnable target, String name) Thread t1 = new Thread(tg, my, "林青霞"); Thread t2 = new Thread(tg, my, "刘意"); System.out.println(t1.getThreadGroup().getName()); System.out.println(t2.getThreadGroup().getName()); //通过组名称设置后台线程,表示该组的线程都是后台线程 tg.setDaemon(true); } private static void method1() { MyRunnable my = new MyRunnable(); Thread t1 = new Thread(my, "林青霞"); Thread t2 = new Thread(my, "刘意"); // 我不知道他们属于那个线程组,我想知道,怎么办 // 线程类里面的方法:public final ThreadGroup getThreadGroup() ThreadGroup tg1 = t1.getThreadGroup(); ThreadGroup tg2 = t2.getThreadGroup(); // 线程组里面的方法:public final String getName() String name1 = tg1.getName(); String name2 = tg2.getName(); System.out.println(name1); System.out.println(name2); // 通过结果我们知道了:线程默认情况下属于main线程组 // 通过下面的测试,你应该能够看到,默任情况下,所有的线程都属于同一个组 System.out.println(Thread.currentThread().getThreadGroup().getName()); } }
(7)
/* * 分析: * 资源类:Student * 设置学生数据:SetThread(生产者) * 获取学生数据:GetThread(消费者) * 测试类:StudentDemo * * 问题1:按照思路写代码,发现数据每次都是:null---0 * 原因:我们在每个线程中都创建了新的资源,而我们要求的时候设置和获取线程的资源应该是同一个 * 如何实现呢? * 在外界把这个数据创建出来,通过构造方法传递给其他的类。 * * 问题2:为了数据的效果好一些,我加入了循环和判断,给出不同的值,这个时候产生了新的问题 * A:同一个数据出现多次 * B:姓名和年龄不匹配 * 原因: * A:同一个数据出现多次 * CPU的一点点时间片的执行权,就足够你执行很多次。 * B:姓名和年龄不匹配 * 线程运行的随机性 * 线程安全问题: * A:是否是多线程环境 是 * B:是否有共享数据 是 * C:是否有多条语句操作共享数据 是 * 解决方案: * 加锁。 * 注意: * A:不同种类的线程都要加锁。 * B:不同种类的线程加的锁必须是同一把。 * * 问题3:虽然数据安全了,但是呢,一次一大片不好看,我就想依次的一次一个输出。 * 如何实现呢? * 通过Java提供的等待唤醒机制解决。 * * 等待唤醒: * Object类中提供了三个方法: * wait():等待 * notify():唤醒单个线程 * notifyAll():唤醒所有线程 * 为什么这些方法不定义在Thread类中呢? * 这些方法的调用必须通过锁对象调用,而我们刚才使用的锁对象是任意锁对象。 * 所以,这些方法必须定义在Object类中。 * * 最终版代码中: * 把Student的成员变量给私有的了。 * 把设置和获取的操作给封装成了功能,并加了同步。 * 设置或者获取的线程里面只需要调用方法即可。 */ public class StudentDemo { public static void main(String[] args) { //创建资源 Student s = new Student(); //设置和获取的类 SetThread st = new SetThread(s); GetThread gt = new GetThread(s); //线程类 Thread t1 = new Thread(st); Thread t2 = new Thread(gt); //启动线程 t1.start(); t2.start(); } } public class Student { private String name; private int age; private boolean flag; // 默认情况是没有数据,如果是true,说明有数据 public synchronized void set(String name, int age) { // 如果有数据,就等待 if (this.flag) { try { this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } // 设置数据 this.name = name; this.age = age; // 修改标记 this.flag = true; this.notify(); } public synchronized void get() { // 如果没有数据,就等待 if (!this.flag) { try { this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } // 获取数据 System.out.println(this.name + "---" + this.age); // 修改标记 this.flag = false; this.notify(); } } public class SetThread implements Runnable { private Student s; private int x = 0; public SetThread(Student s) { this.s = s; } @Override public void run() { while (true) { if (x % 2 == 0) { s.set("林青霞", 27); } else { s.set("刘意", 30); } x++; } } } public class GetThread implements Runnable { private Student s; public GetThread(Student s) { this.s = s; } @Override public void run() { while (true) { s.get(); } } }
(8)
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /* * 线程池的好处:线程池里的每一个线程代码结束后,并不会死亡,而是再次回到线程池中成为空闲状态,等待下一个对象来使用。 * * 如何实现线程的代码呢? * A:创建一个线程池对象,控制要创建几个线程对象。 * public static ExecutorService newFixedThreadPool(int nThreads) * B:这种线程池的线程可以执行: * 可以执行Runnable对象或者Callable对象代表的线程 * 做一个类实现Runnable接口。 * C:调用如下方法即可 * Future<?> submit(Runnable task) * <T> Future<T> submit(Callable<T> task) * D:我就要结束,可以吗? * 可以。 */ public class ExecutorsDemo { public static void main(String[] args) { // 创建一个线程池对象,控制要创建几个线程对象。 // public static ExecutorService newFixedThreadPool(int nThreads) ExecutorService pool = Executors.newFixedThreadPool(2); // 可以执行Runnable对象或者Callable对象代表的线程 pool.submit(new MyRunnable()); pool.submit(new MyRunnable()); //结束线程池 pool.shutdown(); } } public class MyRunnable implements Runnable { @Override public void run() { for (int x = 0; x < 100; x++) { System.out.println(Thread.currentThread().getName() + ":" + x); } } }
(9)
import java.util.concurrent.Callable; //Callable:是带泛型的接口。 //这里指定的泛型其实是call()方法的返回值类型。 public class MyCallable implements Callable { @Override public Object call() throws Exception { for (int x = 0; x < 100; x++) { System.out.println(Thread.currentThread().getName() + ":" + x); } return null; } } import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /* * 多线程实现的方式3: * A:创建一个线程池对象,控制要创建几个线程对象。 * public static ExecutorService newFixedThreadPool(int nThreads) * B:这种线程池的线程可以执行: * 可以执行Runnable对象或者Callable对象代表的线程 * 做一个类实现Runnable接口。 * C:调用如下方法即可 * Future<?> submit(Runnable task) * <T> Future<T> submit(Callable<T> task) * D:我就要结束,可以吗? * 可以。 */ public class CallableDemo { public static void main(String[] args) { //创建线程池对象 ExecutorService pool = Executors.newFixedThreadPool(2); //可以执行Runnable对象或者Callable对象代表的线程 pool.submit(new MyCallable()); pool.submit(new MyCallable()); //结束 pool.shutdown(); } }
(10)
import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /* * 多线程实现的方式3: * A:创建一个线程池对象,控制要创建几个线程对象。 * public static ExecutorService newFixedThreadPool(int nThreads) * B:这种线程池的线程可以执行: * 可以执行Runnable对象或者Callable对象代表的线程 * 做一个类实现Runnable接口。 * C:调用如下方法即可 * Future<?> submit(Runnable task) * <T> Future<T> submit(Callable<T> task) * D:我就要结束,可以吗? * 可以。 */ public class CallableDemo { public static void main(String[] args) throws InterruptedException, ExecutionException { // 创建线程池对象 ExecutorService pool = Executors.newFixedThreadPool(2); // 可以执行Runnable对象或者Callable对象代表的线程 Future<Integer> f1 = pool.submit(new MyCallable(100)); Future<Integer> f2 = pool.submit(new MyCallable(200)); // V get() Integer i1 = f1.get(); Integer i2 = f2.get(); System.out.println(i1); System.out.println(i2); // 结束 pool.shutdown(); } } import java.util.concurrent.Callable; /* * 线程求和案例 */ public class MyCallable implements Callable<Integer> { private int number; public MyCallable(int number) { this.number = number; } @Override public Integer call() throws Exception { int sum = 0; for (int x = 1; x <= number; x++) { sum += x; } return sum; } }
(11)
/* * 匿名内部类的格式: * new 类名或者接口名() { * 重写方法; * }; * 本质:是该类或者接口的子类对象。 */ public class ThreadDemo { public static void main(String[] args) { // 继承Thread类来实现多线程 new Thread() { public void run() { for (int x = 0; x < 100; x++) { System.out.println(Thread.currentThread().getName() + ":" + x); } } }.start(); // 实现Runnable接口来实现多线程 new Thread(new Runnable() { @Override public void run() { for (int x = 0; x < 100; x++) { System.out.println(Thread.currentThread().getName() + ":" + x); } } }) { }.start(); // 更有难度的 new Thread(new Runnable() { @Override public void run() { for (int x = 0; x < 100; x++) { System.out.println("hello" + ":" + x); } } }) { public void run() { for (int x = 0; x < 100; x++) { System.out.println("world" + ":" + x); } } }.start(); } }
(12)
import java.io.File; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Timer; import java.util.TimerTask; /* * 需求:在指定的时间删除我们的指定目录(你可以指定c盘,但是我不建议,我使用项目路径下的demo) */ class DeleteFolder extends TimerTask { @Override public void run() { File srcFolder = new File("demo"); deleteFolder(srcFolder); } // 递归删除目录 public void deleteFolder(File srcFolder) { File[] fileArray = srcFolder.listFiles(); if (fileArray != null) { for (File file : fileArray) { if (file.isDirectory()) { deleteFolder(file); } else { System.out.println(file.getName() + ":" + file.delete()); } } System.out.println(srcFolder.getName() + ":" + srcFolder.delete()); } } } public class TimerTest { public static void main(String[] args) throws ParseException { Timer t = new Timer(); String s = "2014-11-27 15:45:00"; SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); Date d = sdf.parse(s); t.schedule(new DeleteFolder(), d); } } import java.util.Timer; import java.util.TimerTask; /* * 定时器:可以让我们在指定的时间做某件事情,还可以重复的做某件事情。 * 依赖Timer和TimerTask这两个类: * Timer:定时 * public Timer() * public void schedule(TimerTask task,long delay) * public void schedule(TimerTask task,long delay,long period) * public void cancel() * TimerTask:任务 */ public class TimerDemo2 { public static void main(String[] args) { // 创建定时器对象 Timer t = new Timer(); // 3秒后执行爆炸任务第一次,如果不成功,每隔2秒再继续炸 t.schedule(new MyTask2(), 3000, 2000); } } // 做一个任务 class MyTask2 extends TimerTask { @Override public void run() { System.out.println("beng,爆炸了"); } } import java.util.Timer; import java.util.TimerTask; /* * 定时器:可以让我们在指定的时间做某件事情,还可以重复的做某件事情。 * 依赖Timer和TimerTask这两个类: * Timer:定时 * public Timer() * public void schedule(TimerTask task,long delay) * public void schedule(TimerTask task,long delay,long period) * public void cancel() * TimerTask:任务 */ public class TimerDemo { public static void main(String[] args) { // 创建定时器对象 Timer t = new Timer(); // 3秒后执行爆炸任务 // t.schedule(new MyTask(), 3000); //结束任务 t.schedule(new MyTask(t), 3000); } } // 做一个任务 class MyTask extends TimerTask { private Timer t; public MyTask(){} public MyTask(Timer t){ this.t = t; } @Override public void run() { System.out.println("beng,爆炸了"); t.cancel(); } }
以上是关于MySQL从入门到精通(九) MySQL锁,各种锁的主要内容,如果未能解决你的问题,请参考以下文章
《SQL Server 2008从入门到精通》--20180716