拓扑排序(Topological Sorting)
Posted 槐殇树
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了拓扑排序(Topological Sorting)相关的知识,希望对你有一定的参考价值。
一、什么是拓扑排序
在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
- 每个顶点出现且只出现一次。
- 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
- 从 DAG 图中选择一个 没有前驱(即入度为0)的顶点并输出。
- 从图中删除该顶点和所有以它为起点的有向边。
- 重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。
通常,一个有向无环图可以有一个或多个拓扑排序序列。
二、拓扑排序的应用
拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边
三、拓扑排序的实现
根据上面讲的方法,我们关键是要维护一个入度为0的顶点的集合。
图的存储方式有两种:邻接矩阵和邻接表。这里我们采用邻接表来存储图,C++代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
#include<iostream> #include <list> #include <queue> using namespace std;
/************************类声明************************/ class Graph { int V; // 顶点个数 list<int> *adj; // 邻接表 queue<int> q; // 维护一个入度为0的顶点的集合 int* indegree; // 记录每个顶点的入度 public: Graph(int V); // 构造函数 ~Graph(); // 析构函数 void addEdge(int v, int w); // 添加边 bool topological_sort(); // 拓扑排序 };
/************************类定义************************/ Graph::Graph(int V) { this->V = V; adj = new list<int>[V];
indegree = new int[V]; // 入度全部初始化为0 for(int i=0; i<V; ++i) indegree[i] = 0; }
Graph::~Graph() { delete [] adj; delete [] indegree; }
void Graph::addEdge(int v, int w) { adj[v].push_back(w); ++indegree[w]; }
bool Graph::topological_sort() { for(int i=0; i<V; ++i) if(indegree[i] == 0) q.push(i); // 将所有入度为0的顶点入队
int count = 0; // 计数,记录当前已经输出的顶点数 while(!q.empty()) { int v = q.front(); // 从队列中取出一个顶点 q.pop();
cout << v << " "; // 输出该顶点 ++count; // 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈 list<int>::iterator beg = adj[v].begin(); for( ; beg!=adj[v].end(); ++beg) if(!(--indegree[*beg])) q.push(*beg); // 若入度为0,则入栈 }
if(count < V) return false; // 没有输出全部顶点,有向图中有回路 else return true; // 拓扑排序成功 }
|
测试如下DAG图:
1 2 3 4 5 6 7 8 9 10 11 12 13
|
int main() { Graph g(6); // 创建图 g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1);
g.topological_sort(); return 0; }
|
输出结果是 4, 5, 2, 0, 3, 1。这是该图的拓扑排序序列之一。
每次在入度为0的集合中取顶点,并没有特殊的取出规则,随机取出也行,这里使用的queue
。取顶点的顺序不同会得到不同的拓扑排序序列,当然前提是该图存在多个拓扑排序序列。
由于输出每个顶点的同时还要删除以它为起点的边,故上述拓扑排序的时间复杂度为O(V+E)O(V+E)。
(详情http://www.kuqin.com/shuoit/20160111/349954.html)
另外,拓扑排序还可以采用深度优先搜索(DFS)的思想来实现,详见《topological sorting via DFS》。
以上是关于拓扑排序(Topological Sorting)的主要内容,如果未能解决你的问题,请参考以下文章
图论学习二之Topological Sort(拓扑排序)
LeetCode编程训练 - 拓扑排序(Topological Sort)
拓扑排序(Topological Sort)
PAT Advanced 1146 Topological Order (25) [拓扑排序]
A 1146 Topological Order (25分)(拓扑排序)
Topological Sort拓扑排序