master theorem

Posted Wujunde

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了master theorem相关的知识,希望对你有一定的参考价值。

The master theorem concerns recurrence relations of the form:

{\displaystyle T(n)=a\;T\!\left({\frac {n}{b}}\right)+f(n)}技术分享 where {\displaystyle a\in \mathbb {N} {\mbox{, }}1<b\in \mathbb {R} }技术分享

In the application to the analysis of a recursive algorithm, the constants and function take on the following significance:

  • n is the size of the problem.
  • a is the number of subproblems in the recursion.
  • n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the same size.)
  • f (n) is the cost of the work done outside the recursive calls, which includes the cost of dividing the problem and the cost of merging the solutions to the subproblems.

It is possible to determine an asymptotic tight bound in these three cases:

Case 1

Generic form

技术分享 where 技术分享 (using big O notation)

then:

技术分享

Example

技术分享

As one can see from the formula above:

技术分享, so
技术分享, where {\displaystyle c=2}技术分享

Next, we see if we satisfy the case 1 condition:

技术分享.

It follows from the first case of the master theorem that

技术分享

(indeed, the exact solution of the recurrence relation is 技术分享, assuming技术分享).

Case 2

Generic form

If it is true, for some constant k ≥ 0, that:

技术分享 where 技术分享

then:

技术分享

Example

技术分享

As we can see in the formula above the variables get the following values:

技术分享
技术分享 where {\displaystyle c=1,k=0}技术分享

Next, we see if we satisfy the case 2 condition:

技术分享, and therefore, {\displaystyle c=\log _{b}a}技术分享

So it follows from the second case of the master theorem:

技术分享

Thus the given recurrence relation T(n) was in Θ(n log n).

(This result is confirmed by the exact solution of the recurrence relation, which is技术分享, assuming 技术分享.)

Case 3

Generic form

If it is true that:

技术分享 where {\displaystyle c>\log _{b}a}技术分享

and if it is also true that:

技术分享 for some constant {\displaystyle k<1}技术分享 and sufficiently large 技术分享 (often called the regularity condition)

then:

技术分享

Example

技术分享

As we can see in the formula above the variables get the following values:

技术分享
技术分享, where {\displaystyle c=2}技术分享

Next, we see if we satisfy the case 3 condition:

技术分享, and therefore, yes, {\displaystyle c>\log _{b}a}技术分享

The regularity condition also holds:

技术分享, choosing技术分享

So it follows from the third case of the master theorem:

技术分享

Thus the given recurrence relation T(n) was in Θ(n2), that complies with the f (n) of the original formula.

(This result is confirmed by the exact solution of the recurrence relation, which is 技术分享, assuming 技术分享.)

 

 

from wikipedia

---------------------------------------------------------------------------------------------------------------------------------------------

it means lim(n->Infinity)(f(n)/n^(b lg a)) should  1. ->Infinity && f(n)/n^(b lg a)    2. (f(n)/n^(b lg a)< n^x for x>0.

if 1 but not 2 can‘t use the method.  as f(n)/n^(b lg a) = n*lgn/n = lgn. 

以上是关于master theorem的主要内容,如果未能解决你的问题,请参考以下文章

K8S——单master节点和基于单master节点的双master节点二进制部署(本机实验,防止卡顿,所以多master就不做3台了)

SaltStck无Master和多Master架构

master 分支和 'origin/master' 已经发散了,如何' undiverge' 分支'?

【1】k8s之master

Zookeeper系列五:Master选举ZK高级特性:基本模型

k8s 让master主节点也参与调度