mysql索引有几种

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mysql索引有几种相关的知识,希望对你有一定的参考价值。

mysql目前主要有以下几种索引类型:FULLTEXT,HASH,BTREE,RTREE。
那么,这几种索引有什么功能和性能上的不同呢?
FULLTEXT
即为全文索引,目前只有MyISAM引擎支持。其可以在CREATE TABLE ,ALTER TABLE ,CREATE INDEX 使用,不过目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE INDEX创建FULLTEXT索引,要比先为一张表建立FULLTEXT然后再将数据写入的速度快很多。
全文索引并不是和MyISAM一起诞生的,它的出现是为了解决WHERE name LIKE “%word%"这类针对文本的模糊查询效率较低的问题。在没有全文索引之前,这样一个查询语句是要进行遍历数据表操作的,可见,在数据量较大时是极其的耗时的,如果没有异步IO处理,进程将被挟持,很浪费时间,当然这里不对异步IO作进一步讲解,想了解的童鞋,自行谷哥。
全文索引的使用方法并不复杂:
创建ALTER TABLE table ADD INDEX `FULLINDEX` USING FULLTEXT(`cname1`[,cname2…]);
使用SELECT * FROM table WHERE MATCH(cname1[,cname2…]) AGAINST (\'word\' MODE );
其中, MODE为搜寻方式(IN BOOLEAN MODE ,IN NATURAL LANGUAGE MODE ,IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION / WITH QUERY EXPANSION)。
关于这三种搜寻方式,愚安在这里也不多做交代,简单地说,就是,布尔模式,允许word里含一些特殊字符用于标记一些具体的要求,如+表示一定要有,-表示一定没有,*表示通用匹配符,是不是想起了正则,类似吧;自然语言模式,就是简单的单词匹配;含表达式的自然语言模式,就是先用自然语言模式处理,对返回的结果,再进行表达式匹配。
对搜索引擎稍微有点了解的同学,肯定知道分词这个概念,FULLTEXT索引也是按照分词原理建立索引的。西文中,大部分为字母文字,分词可以很方便的按照空格进行分割。但很明显,中文不能按照这种方式进行分词。那又怎么办呢?这个向大家介绍一个Mysql的中文分词插件Mysqlcft,有了它,就可以对中文进行分词,想了解的同学请移步Mysqlcft,当然还有其他的分词插件可以使用。
HASH
Hash这个词,可以说,自打我们开始码的那一天起,就开始不停地见到和使用到了。其实,hash就是一种(key=>value)形式的键值对,如数学中的函数映射,允许多个key对应相同的value,但不允许一个key对应多个value。正是由于这个特性,hash很适合做索引,为某一列或几列建立hash索引,就会利用这一列或几列的值通过一定的算法计算出一个hash值,对应一行或几行数据(这里在概念上和函数映射有区别,不要混淆)。在java语言中,每个类都有自己的hashcode()方法,没有显示定义的都继承自object类,该方法使得每一个对象都是唯一的,在进行对象间equal比较,和序列化传输中起到了很重要的作用。hash的生成方法有很多种,足可以保证hash码的唯一性,例如在MongoDB中,每一个document都有系统为其生成的唯一的objectID(包含时间戳,主机散列值,进程PID,和自增ID)也是一种hash的表现。额,我好像扯远了-_-!
由于hash索引可以一次定位,不需要像树形索引那样逐层查找,因此具有极高的效率。那为什么还需要其他的树形索引呢?
在这里愚安就不自己总结了。引用下园子里其他大神的文章:来自 14的路 的MySQL的btree索引和hash索引的区别
(1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。
由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。
(2)Hash 索引无法被用来避免数据的排序操作。
由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
(3)Hash 索引不能利用部分索引键查询。
对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。
(4)Hash 索引在任何时候都不能避免表扫描。
前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

愚安我稍作补充,讲一下HASH索引的过程,顺便解释下上面的第4,5条:
当我们为某一列或某几列建立hash索引时(目前就只有MEMORY引擎显式地支持这种索引),会在硬盘上生成类似如下的文件:
hash值 存储地址
1db54bc745a1 77#45b5
4bca452157d4 76#4556,77#45cc…

hash值即为通过特定算法由指定列数据计算出来,磁盘地址即为所在数据行存储在硬盘上的地址(也有可能是其他存储地址,其实MEMORY会将hash表导入内存)。
这样,当我们进行WHERE age = 18 时,会将18通过相同的算法计算出一个hash值==>在hash表中找到对应的储存地址==>根据存储地址取得数据。
所以,每次查询时都要遍历hash表,直到找到对应的hash值,如(4),数据量大了之后,hash表也会变得庞大起来,性能下降,遍历耗时增加,如(5)。
BTREE
BTREE索引就是一种将索引值按一定的算法,存入一个树形的数据结构中,相信学过数据结构的童鞋都对当初学习二叉树这种数据结构的经历记忆犹新,反正愚安我当时为了软考可是被这玩意儿好好地折腾了一番,不过那次考试好像没怎么考这个。如二叉树一样,每次查询都是从树的入口root开始,依次遍历node,获取leaf。
BTREE在MyISAM里的形式和Innodb稍有不同
在 Innodb里,有两种形态:一是primary key形态,其leaf node里存放的是数据,而且不仅存放了索引键的数据,还存放了其他字段的数据。二是secondary index,其leaf node和普通的BTREE差不多,只是还存放了指向主键的信息.
而在MyISAM里,主键和其他的并没有太大区别。不过和Innodb不太一样的地方是在MyISAM里,leaf node里存放的不是主键的信息,而是指向数据文件里的对应数据行的信息.
RTREE
RTREE在mysql很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有MyISAM、BDb、InnoDb、NDb、Archive几种。
相对于BTREE,RTREE的优势在于范围查找.
各种索引的使用情况
(1)对于BTREE这种Mysql默认的索引类型,具有普遍的适用性
(2)由于FULLTEXT对中文支持不是很好,在没有插件的情况下,最好不要使用。其实,一些小的博客应用,只需要在数据采集时,为其建立关键字列表,通过关键字索引,也是一个不错的方法,至少愚安我是经常这么做的。
(3)对于一些搜索引擎级别的应用来说,FULLTEXT同样不是一个好的处理方法,Mysql的全文索引建立的文件还是比较大的,而且效率不是很高,即便是使用了中文分词插件,对中文分词支持也只是一般。真要碰到这种问题,Apache的Lucene或许是你的选择。
(4)正是因为hash表在处理较小数据量时具有无可比拟的素的优势,所以hash索引很适合做缓存(内存数据库)。如mysql数据库的内存版本Memsql,使用量很广泛的缓存工具Mencached,NoSql数据库redis等,都使用了hash索引这种形式。当然,不想学习这些东西的话Mysql的MEMORY引擎也是可以满足这种需求的。
(5)至于RTREE,愚安我至今还没有使用过,它具体怎么样,我就不知道了。有RTREE使用经历的同学,到时可以交流下!
参考技术A

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。
1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5; 需要执行几次树的搜索操作,会扫描多少行?mysql> create table T (    -> ID int primary key,    -> k int NOT NULL DEFAULT 0,    -> s varchar(16) NOT NULL DEFAULT '',    -> index k(k))    -> engine=InnoDB;mysql> insert into T values(100,1, 'aa'),(200,2,'bb'),\\      (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
这分别是 ID 字段索引树、k 字段索引树。 

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?
2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 select ID from T wherek between 3 and 5;,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

    # 有这样一个表 P

    mysql> create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB;

    mysql> insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28);

    # 下面的语句结果相同

    mysql> select * from P where name='张三' and sex='F';     ## A1

    mysql> select * from P where sex='F' and age=26;         ## A2

    # explain 看一下

    mysql> explain select * from P where name='张三' and sex='F';

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref         | rows | filtered | Extra       |

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    |  1 | SIMPLE      | P     | NULL       | ref  | tl            | tl   | 38      | const,const |    1 |   100.00 | Using index |

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    mysql> explain select * from P where sex='F' and age=26;

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    | id | select_type | table | partitions | type  | possible_keys | key  | key_len | ref  | rows | filtered | Extra                    |

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    |  1 | SIMPLE      | P     | NULL       | index | NULL          | tl   | 43      | NULL |    6 |    16.67 | Using where; Using index |

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

    2.3 索引下推

    以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的mysql> select * from tuser where name like '张%' and age=26 and sex=M;
    通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

    2.4 隐式类型转化

    隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:修改表结构,修改字段数据类型。

    修改应用,将应用中传入的字符类型改为与表结构相同类型。

    3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

    3.2 扫描行数

    MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。# 通过 show index 方法,查看索引的基数mysql> show index from t;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| t     |          0 | PRIMARY  |            1 | id          | A         |       95636 |     NULL | NULL   |      | BTREE      |         |               || t     |          1 | a        |            1 | a           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               || t     |          1 | b        |            1 | b           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
    MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

    在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

    on 表示统计信息会持久化存储。默认 N = 20,M = 10。

    off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

    由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

    可以用 analyze table 来重新统计索引信息,进行修正。

    ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...
    3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

mysql中的优化, 简单的说了一下垂直分表, 水平分表(有几种模运算),读写分离.

一、mysql中的优化

where语句的优化

1.尽量避免在 where 子句中对字段进行表达式操作
select id from uinfo_jifen where jifen/60 > 10000;
优化后:
Select id from uinfo_jifen where jifen>600000;

2.应尽量避免在where子句中对字段进行函数操作,这将导致mysql放弃使用索引

select uid from imid where datediff(create_time,‘2011-11-22‘)=0
优化后
select uid from imid where create_time> =‘2011-11-21‘ and create_time<‘2011-11-23’;

优化Group By语句

默认情况下,MySQL 排序所有GROUP BY col1,col2,....。查询的方法如同在查询中指定ORDER BY col1,col2,...。如果显式包括一个包含相同的列的ORDER BY子句,MySQL 可以毫不减速地对它进行优化,尽管仍然进行排序。如果查询包括GROUP BY 但你想要避免排序结果的消耗,你可以指定ORDER BY NULL禁止排序。
 

优化Order by语句

在某些情况中,MySQL 可以使用一个索引来满足ORDER BY 子句,而不需要额外的排序。where 条件和order by 使用相同的索引,并且order by 的顺序和索引顺序相同,并且order by 的字段都是升序或者都是降序。
 

优化insert语句

如果你同时从同一客户插入很多行,使用多个值表的INSERT 语句。这比使用分开 INSERT 语句快(在一些情况中几倍)。Insert into test values(1,2),(1,3),(1,4)…
 
 
二、垂直分表, 水平分表(有几种模运算),读写分离.

垂直分表:

  把主码和一些列放到一个表,然后把主码和另外的列放到另一个表中。
  如果一个表中某些列常用,而另外一些列不常用,则可以采用垂直分割,另外垂直分割可以使得数据行变小,一个数据页就能存放更多的数据,在查询时就会减少I/O次数。其缺点是需要管理冗余列,查询所有数据需要join操作。

水平分割:

  根据一列或多列数据的值把数据行放到两个独立的表中。

  水平分割通常在下面的情况下使用。
  • 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度。
  • 表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用。
  • 需要把数据存放到多个介质上。
  水平分割会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要union操作。在许多数据库应用中,这种复杂性会超过它带来的优点,因为只 要索引关键字不大,则在索引用于查询时,表中增加两到三倍数据量,查询时也就增加读一个索引层的磁盘次数。

读写分离:

  一台数据库服务器,是对外提供增删改业务的生产服务器;另一台数据库服务器,主要进行读的操作。

  主要通过RAID把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘)。

以上是关于mysql索引有几种的主要内容,如果未能解决你的问题,请参考以下文章

mysql有几种索引类型?使用索引时都有那些地方要注意

mysql有几种索引类型?使用索引时都有那些地方要注意?sql优化原则

mysql有几种索引类型?使用索引时都有那些地方要注意?sql优化原则是啥?

数据库技术高质量面试总结

数据库技术高质量面试总结

mysql--索引优化