6.2笔记

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了6.2笔记相关的知识,希望对你有一定的参考价值。

一、水仙花数

       水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身。(例如:1^3 + 5^3+ 3^3 = 153)

水仙花数只是自幂数的一种,严格来说三位数的3次幂数才成为水仙花数。

附:其他位数的自幂数名字

一位自幂数:独身数

两位自幂数:没有

三位自幂数:水仙花数

四位自幂数:四叶玫瑰数

五位自幂数:五角星数

六位自幂数:六合数

七位自幂数:北斗七星数

八位自幂数:八仙数

九位自幂数:九九重阳数

十位自幂数:十全十美数

二、排序

      排序是计算机内经常进行的一种操作,其目的是将一组"无序"的记录序列调整为"有序"的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。

概念描述

        将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程叫做排序。假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的。

常见排序算法

        快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法

概述

      内排序的方法有许多种,按所用策略不同,可归纳为五类:插入排序、选择

      排序、交换排序、归并排序和分配排序。

      其中,插入排序主要包括直接插入排序和希尔排序两种;选择排序主要包括直接选择排序和堆排序;交换排序主要包括气(冒)泡排序和快速排序。

分类

       稳定排序:假设在待排序的文件中,存在两个或两个以上的记录具有相同的关键字,在

用某种排序法排序后,若这些相同关键字的元素的相对次序仍然不变,则这种排序方法

是稳定的。其中冒泡,插入,基数,归并属于稳定排序,选择,快速,希尔,堆属于不稳定排序。

      就地排序:若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间为O(1),

则称为就地排序

三、冒泡排序

        冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

         已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。降序排列与升序排列相类似,若a[1]小于a[2]则交换两者的值,否则不变,后面以此类推。 总的来讲,每一轮排序后最大(或最小)的数将移动到数据序列的最后,理论上总共要进行n(n-1)/2次交换。

        优点:稳定;

         缺点:慢,每次只能移动相邻两个数据。

四、选这排序

          选择排序的基本思想是:每一趟在n-i+1(i=1,2,…n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录。基于此思想的算法主要有简单选择排序、树型选择排序和堆排序。

          简单选择排序的基本思想:第1趟,在待排序记录r[1]~r[n]中选出最小的记录,将它与r[1]交换;第2趟,在待排序记录r[2]~r[n]中选出最小的记录,将它与r[2]交换;以此类推,第i趟在待排序记录r[i]~r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

以上是关于6.2笔记的主要内容,如果未能解决你的问题,请参考以下文章

大数据讲课笔记6.2 ZooKeeper数据模型

6.2-全栈Java笔记:异常处理机制的分类

[javase学习笔记]-6.2 类与对象的关系

Android开发:《Gradle Recipes for Android》阅读笔记(翻译)6.2——DSL文档

6.2 数值分析: 求积公式的代数精度

python自学笔记