前馈神经网络
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了前馈神经网络相关的知识,希望对你有一定的参考价值。
参考技术A前馈神经网络,又称 FNN(Feedforward Neural Network) ,是一种最简单的神经网络结构, FNN 结构是由最基本的神经元( neuron )堆叠而成;在每个神经元会做两步操作:1.与对应权重相乘累加,称为神经元状态。2.累加后的结果传入激活函数 。激活函数的值即为一个神经元的输出。
总的来说, FNN 的模型可以描述成: 每经过一个隐含层就再给其增加一个中间函数,而每个隐含层所代表的具体的中间函数形式,是比较难解释。
与其他机器模型一样, FNN 也需要模型训练时需要的目标 cost function ,也叫做 loss function 。常用的 loss function 有:
与 linear regression 和 logistic regression 有些不同,模型的 cost function 可以通过极大似然估计这个角度切入,而前馈神经网络的 cost function ,笔者暂时还未深入了解,为何是如此设置。
而当有了 cost function ,则模型训练的目标变成最小化损失函数,变成了一个无约束优化问题。
FNN 参数的训练,可以使用反向传播算法,其基本思想是:1. 计算每一层的状态值和激活值,直至最后一层(前向传播);2. 从最后一层开始,计算每一层的误差,不断地向前推进(反向传播);3. 利用误差迭代参数,直至满足相应条件(达到迭代次数或误差得到满足)
以下图的3层前馈神经网络为例:
第二层神经元的状态值和激活值为:
而第三层神经元的状态值和激活值则为:
如果若以矩阵形式来描述,则前向传播可以写成如下:
先对 cost function 进行扩展
因此,若对输出层的神经元求偏导,则有:
若写成矩阵形式,则为:
继续对 cost function 进行进一步扩展
对隐含层的神经元求偏导有:
设 ,则上式可写成:
这里 是指,与第 层的第 个神经元连接的第 层的神经元所组成的集合。由于上述的 FNN 各层之间是一种全连接方式,因此上述 写成矩阵形式为: 而 写成矩阵形式则为:
针对上述前馈神经网络,BP算法最后可以总结为四条公式:
选用不同的 cost funtion ,最后公式的形式可能会有所不同,但整个BP算法的流程是一样的。使用BP算法训练的神经网络,也被称为BP神经网络。深度学习中很多网络都可以使用BP算法来进行参数训练。
这里使用的是吴恩达在Coursera中machine learning的一个实验例子;在实验中,是通过搭建一个简单的神经网络,做到手写体数字识别的效果。
激活函数:
神经网络结构规格:
BP算法:
最后网络在数据集上训练了300次,在训练集上的准确率达到了96%,与在Coursera里的实验相比,上述该例子的实现中并没有进行正则化,并且在训练次数较多;上述仅用最简的方法实现BP算法,较为粗糙。
前馈神经网络是最为简单的神经网络结构,是神经网络中的基础知识。当隐含层层数增加时,神经网络则可称之为深度网络。上述也对训练神经网络的BP算法做了简单介绍,也进行了较为粗略地实现。
神经网络架构PYTORCH-前馈神经网络
首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例:
一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了.
1 class NeuralNet(nn.Module): 2 def __init__(self, input_size, hidden_size, num_classes): 3 super(NeuralNet, self).__init__() 4 self.fc1 = nn.Linear(input_size, hidden_size) //输入层 5 self.relu = nn.ReLU() //隐藏网络:elu的功能是将输入的feature的tensor所有的元素中如果小于零的就取零。 6 self.fc2 = nn.Linear(hidden_size, num_classes) //输出层 7 8 def forward(self, x): 9 out = self.fc1(x) 10 out = self.relu(out) 11 out = self.fc2(out) 12 return out
下面要看一下怎么调用和使用前馈神经网络的:为了提高运算效率,要把该网络优先使用GPU来进行运算.这里的输入尺寸和隐藏尺寸要和训练的图片保持一致的.
# Device configuration device = torch.device(‘cuda‘ if torch.cuda.is_available() else ‘cpu‘) model = NeuralNet(input_size, hidden_size, num_classes).to(device)
为了训练网络,都需要定义一个loss function来描述模型对问题的求解精度。loss越小,代表模型的结果和真实值偏差越小,这里使用CrossEntropyLoss()来计算.Adam,这是一种基于一阶梯度来优化随机目标函数的算法。详细的概念和推导我们后续再专门做分析.
criterion = nn.CrossEntropyLoss() //针对单目标分类问题, 结合了 nn.LogSoftmax() 和 nn.NLLLoss() 来计算 loss.
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) //优化器,设置学习的速度和使用的模型
接下来就是训练模型了,训练模型这部分是有点绕的,首先我们来看代码,后面再针对各个函数做说明:
1 total_step = len(train_loader) 2 for epoch in range(num_epochs): 3 for i, (images, labels) in enumerate(train_loader): 4 # Move tensors to the configured device 5 images = images.reshape(-1, 28*28).to(device) 6 labels = labels.to(device) 7 8 # Forward pass 9 outputs = model(images) 10 loss = criterion(outputs, labels) 11 12 # Backward and optimize 13 optimizer.zero_grad() //把梯度置零,也就是把loss关于weight的导数变成0. 14 loss.backward() 15 optimizer.step()
训练模型,首先把图片矩阵变换成25*25的矩阵单元.其次,把运算参数绑定到特定设备上.
然后就是网络的前向传播了:
outputs = model(inputs)
然后将输出的outputs和原来导入的labels作为loss函数的输入就可以得到损失了:
loss = criterion(outputs, labels)
计算得到loss后就要回传损失。要注意的是这是在训练的时候才会有的操作,测试时候只有forward过程。
loss.backward()
回传损失过程中会计算梯度,然后需要根据这些梯度更新参数,optimizer.step()就是用来更新参数的。optimizer.step()后,你就可以从optimizer.param_groups[0][‘params’]里面看到各个层的梯度和权值信息。
optimizer.step()
测试这个模型,没有梯度的模型,这样就大大大额减少了内存的使用量和运算效率,这个测试模型,其实只有一个关键的语句就可以预测模型了,那就是:_, predicted = torch.max(outputs.data, 1).
with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 28*28).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) print(labels.size(0)) correct += (predicted == labels).sum().item()
这里有个问题.训练好的数据怎么和预测联系起来呢?
训练输出的outputs也是torch.autograd.Variable格式,得到输出后(网络的全连接层的输出)还希望能到到模型预测该样本属于哪个类别的信息,这里采用torch.max。torch.max()的第一个输入是tensor格式,所以用outputs.data而不是outputs作为输入;第二个参数1是代表dim的意思,也就是取每一行的最大值,其实就是我们常见的取概率最大的那个index;第三个参数loss也是torch.autograd.Variable格式。
总体源码:
1 import torch 2 import torch.nn as nn 3 import torchvision 4 import torchvision.transforms as transforms 5 6 7 # Device configuration 8 device = torch.device(‘cuda‘ if torch.cuda.is_available() else ‘cpu‘) 9 10 # Hyper-parameters 11 input_size = 784 12 hidden_size = 500 13 num_classes = 10 14 #input_size = 84 15 #hidden_size = 50 16 #num_classes = 2 17 num_epochs = 5 18 batch_size = 100 19 learning_rate = 0.001 20 21 # MNIST dataset 22 train_dataset = torchvision.datasets.MNIST(root=‘../../data‘, 23 train=True, 24 transform=transforms.ToTensor(), 25 download=True) 26 27 test_dataset = torchvision.datasets.MNIST(root=‘../../data‘, 28 train=False, 29 transform=transforms.ToTensor()) 30 31 # Data loader 32 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 33 batch_size=batch_size, 34 shuffle=True) 35 36 test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 37 batch_size=batch_size, 38 shuffle=False) 39 40 # Fully connected neural network with one hidden layer 41 class NeuralNet(nn.Module): 42 def __init__(self, input_size, hidden_size, num_classes): 43 super(NeuralNet, self).__init__() 44 self.fc1 = nn.Linear(input_size, hidden_size) 45 self.relu = nn.ReLU() 46 self.fc2 = nn.Linear(hidden_size, num_classes) 47 48 def forward(self, x): 49 out = self.fc1(x) 50 out = self.relu(out) 51 out = self.fc2(out) 52 return out 53 54 model = NeuralNet(input_size, hidden_size, num_classes).to(device) 55 56 # Loss and optimizer 57 criterion = nn.CrossEntropyLoss() 58 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 59 60 # Train the model 61 total_step = len(train_loader) 62 for epoch in range(num_epochs): 63 for i, (images, labels) in enumerate(train_loader): 64 # Move tensors to the configured device 65 images = images.reshape(-1, 28*28).to(device) 66 labels = labels.to(device) 67 68 # Forward pass 69 outputs = model(images) 70 loss = criterion(outputs, labels) 71 72 # Backward and optimize 73 optimizer.zero_grad() 74 loss.backward() 75 optimizer.step() 76 77 if (i+1) % 100 == 0: 78 print (‘Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}‘ 79 .format(epoch+1, num_epochs, i+1, total_step, loss.item())) 80 # Test the model 81 # In test phase, we don‘t need to compute gradients (for memory efficiency) 82 with torch.no_grad(): 83 correct = 0 84 total = 0 85 for images, labels in test_loader: 86 images = images.reshape(-1, 28*28).to(device) 87 labels = labels.to(device) 88 outputs = model(images) 89 _, predicted = torch.max(outputs.data, 1) 90 total += labels.size(0) 91 #print(predicted) 92 correct += (predicted == labels).sum().item() 93 94 print(‘Accuracy of the network on the 10000 test images: {} %‘.format(100 * correct / total)) 95 96 # Save the model checkpoint 97 torch.save(model.state_dict(), ‘model.ckpt‘)
每日一言:人之所畏,不可不畏。
参考文档:
1 https://blog.csdn.net/fireflychh/article/details/75516165
2 https://blog.csdn.net/kgzhang/article/details/77479737
3 https://github.com/pytorch/tutorials
以上是关于前馈神经网络的主要内容,如果未能解决你的问题,请参考以下文章