#include "stdio.h" main() int a=5,b=-3,c=4; printf("%d%d\n",(++a,b++),c-2);
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了#include "stdio.h" main() int a=5,b=-3,c=4; printf("%d%d\n",(++a,b++),c-2);相关的知识,希望对你有一定的参考价值。
但是资料书上的答案是-22,不知道是哪个错了,请高人帮忙求解一下。。。另外,还有一点到现在还是很模糊的是a++是先自动加1的,什么时候a++是先不自动加1,过会儿再自动加1的。。。O(∩_∩)O谢谢
我测试结果也是-32,书上错的。int a=5,b=-3,c=4;
printf("%d%d\n",(++a,b++),c-2);
执行这个语句时,printf是一个C自带的方法,我们可以假设它的定义为:
void printf(char[] formater,args[]); 所以调用printf时:可以这样理解上面语句:先计算参数的值
formater="%d%d\n";
args[1]=(++a,b++); //其结果是args[1]=(++a,b++)=5++,(-3)--=(-3)--=-3;
args[2]=c-2; //其结果是args[2]=c-2=4-2=2;
再输出结果:printf(formater, args[1], args[2]);
计算完后,再执行输出,最后调用的相当于是 printf("%d%d\n",-3,2); 故答案应该是-32。
i++和++i的运算,下面这两个例子给你对比理解。
int a=0,b;
b=a++;
printf("a=%d,b=%d",a,b);
输出结果为:a=1,b=0
int a=0,b;
b=++a;
printf("a=%d,b=%d",a,b);
输出结果为:a=1,b=1 参考技术A 这种问题和编译器有关的,不同的编译器优化的方式不一样,结果也不一样,不用纠结这类问题,实际工作中绝对不会遇到,至于前置++和后置++你可以看下书,自己理解了才能灵活运用。 参考技术B 书错了 ++a是执行这条语句前a自加一 a++是执行完这条语句后自加一 参考技术C printf("%d%d\n",(++a,b++),c-2);
这里有两个%d第一个是取第一个括号里的b++的值,第二个是取c-2的值
(++a,b++)这个括号里面是取b++的值,因为++在后所以是先取b然后再加加
这样的话是取-3
c-2是2所以结果是-32追问
我和你想的是一样的,但是我现在就是纠结b++什么时候就直接等于-2了,能举个例子帮我把b++什么时候是-3,什么时候是-2区分一下,谢了。。。
追答VC是对的吧,如果真的答案不一样的话只能是说编译器不一样啊.毕竟你现在也说了VC结果出来是-32.书上也有错误的,这种变态的写法只是要考试的时候遇到的,纸上谈兵,没必要这么深究吧,知道有这么回事就行了
本回答被提问者采纳如何使用opencv实现金字塔光流lk跟踪算法
参考技术A #include <stdio.h>#include <windows.h>
#include "cv.h"
#include "cxcore.h"
#include "highgui.h"
#include <opencv2\opencv.hpp>
using namespace cv;
static const double pi = 3.14159265358979323846;
inline static double square(int a)
return a * a;
/*该函数目的:给img分配内存空间,并设定format,如位深以及channel数*/
inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int channels)
if (*img != NULL) return;
*img = cvCreateImage(size, depth, channels);
if (*img == NULL)
fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");
exit(-1);
/*主函数,原程序是读取avi视频文件,然后处理,我简单改成从摄像头直接读取数据*/
int main(int argc, char *argv[])
//读取摄像头
VideoCapture cap(0);
//读取视频文件
//VideoCapture cap; cap.open("optical_flow_input.avi");
if (!cap.isOpened())
return -1;
Mat frame;
/*
bool stop = false;
while (!stop)
cap >> frame;
// cvtColor(frame, edges, CV_RGB2GRAY);
// GaussianBlur(edges, edges, Size(7, 7), 1.5, 1.5);
// Canny(edges, edges, 0, 30, 3);
// imshow("当前视频", edges);
imshow("当前视频", frame);
if (waitKey(30) >= 0)
stop = true;
*/
//CvCapture *input_video = cvCaptureFromFile( "optical_flow_input.avi" );
//cv::VideoCapture cap = *(cv::VideoCapture *) userdata;
//if (input_video == NULL)
//
// fprintf(stderr, "Error: Can't open video device.\n");
// return -1;
//
/*先读取一帧,以便得到帧的属性,如长、宽等*/
//cvQueryFrame(input_video);
/*读取帧的属性*/
CvSize frame_size;
frame_size.height = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
frame_size.width = cap.get(CV_CAP_PROP_FRAME_WIDTH);
/*********************************************************/
/*用于把结果写到文件中去,非必要
int frameW = frame_size.height; // 744 for firewire cameras
int frameH = frame_size.width; // 480 for firewire cameras
VideoWriter writer("VideoTest.avi", -1, 25.0, cvSize(frameW, frameH), true);
/*开始光流法*/
//VideoWriter writer("VideoTest.avi", CV_FOURCC('D', 'I', 'V', 'X'), 25.0, Size(640, 480), true);
while (true)
static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL,
*frame2_1C = NULL, *eig_image = NULL, *temp_image = NULL,
*pyramid1 = NULL, *pyramid2 = NULL;
Mat framet;
/*获取第一帧*/
// cap >> framet;
cap.read(framet);
Mat edges;
//黑白抽象滤镜模式
// cvtColor(framet, edges, CV_RGB2GRAY);
// GaussianBlur(edges, edges, Size(7, 7), 1.5, 1.5);
// Canny(edges, edges, 0, 30, 3);
//转换mat格式到lpiimage格式
frame = &IplImage(framet);
if (frame == NULL)
fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
return -1;
/*由于opencv的光流函数处理的是8位的灰度图,所以需要创建一个同样格式的
IplImage的对象*/
allocateOnDemand(&frame1_1C, frame_size, IPL_DEPTH_8U, 1);
/* 把摄像头图像格式转换成OpenCV惯常处理的图像格式*/
cvConvertImage(frame, frame1_1C, 0);
/* 我们需要把具有全部颜色信息的原帧保存,以备最后在屏幕上显示用*/
allocateOnDemand(&frame1, frame_size, IPL_DEPTH_8U, 3);
cvConvertImage(frame, frame1, 0);
/* 获取第二帧 */
//cap >> framet;
cap.read(framet);
// cvtColor(framet, edges, CV_RGB2GRAY);
// GaussianBlur(edges, edges, Size(7, 7), 1.5, 1.5);
// Canny(edges, edges, 0, 30, 3);
frame = &IplImage(framet);
if (frame == NULL)
fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
return -1;
/*原理同上*/
allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH_8U, 1);
cvConvertImage(frame, frame2_1C, 0);
/*********************************************************
开始shi-Tomasi算法,该算法主要用于feature selection,即一张图中哪些是我
们感兴趣需要跟踪的点(interest point)
input:
* "frame1_1C" 输入图像.
* "eig_image" and "temp_image" 只是给该算法提供可操作的内存区域.
* 第一个".01" 规定了特征值的最小质量,因为该算法要得到好的特征点,哪就
需要一个选择的阈值
* 第二个".01" 规定了像素之间最小的距离,用于减少运算复杂度,当然也一定
程度降低了跟踪精度
* "NULL" 意味着处理整张图片,当然你也可以指定一块区域
output:
* "frame1_features" 将会包含fram1的特征值
* "number_of_features" 将在该函数中自动填充上所找到特征值的真实数目,
该值<= 400
**********************************************************/
/*开始准备该算法需要的输入*/
/* 给eig_image,temp_image分配空间*/
allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);
allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);
/* 定义存放frame1特征值的数组,400只是定义一个上限 */
CvPoint2D32f frame1_features[400];
int number_of_features = 400;
/*开始跑shi-tomasi函数*/
cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image,
frame1_features, &number_of_features, .01, .01, NULL);
/**********************************************************
开始金字塔Lucas Kanade光流法,该算法主要用于feature tracking,即是算出
光流,并跟踪目标。
input:
* "frame1_1C" 输入图像,即8位灰色的第一帧
* "frame2_1C" 第二帧,我们要在其上找出第一帧我们发现的特征点在第二帧
的什么位置
* "pyramid1" and "pyramid2" 是提供给该算法可操作的内存区域,计算中间
数据
* "frame1_features" 由shi-tomasi算法得到的第一帧的特征点.
* "number_of_features" 第一帧特征点的数目
* "optical_flow_termination_criteria" 该算法中迭代终止的判别,这里是
epsilon<0.3,epsilon是两帧中对应特征窗口的光度之差的平方,这个以后的文
章会讲
* "0" 这个我不知道啥意思,反正改成1就出不来光流了,就用作者原话解释把
means disable enhancements. (For example, the second array isn't
pre-initialized with guesses.)
output:
* "frame2_features" 根据第一帧的特征点,在第二帧上所找到的对应点
* "optical_flow_window" lucas-kanade光流算法的运算窗口,具体lucas-kanade
会在下一篇详述
* "5" 指示最大的金字塔层数,0表示只有一层,那就是没用金字塔算法
* "optical_flow_found_feature" 用于指示在第二帧中是否找到对应特征值,
若找到,其值为非零
* "optical_flow_feature_error" 用于存放光流误差
**********************************************************/
/*开始为pyramid lucas kanade光流算法输入做准备*/
CvPoint2D32f frame2_features[400];
/* 该数组相应位置的值为非零,如果frame1中的特征值在frame2中找到 */
char optical_flow_found_feature[400];
/* 数组第i个元素表对应点光流误差*/
float optical_flow_feature_error[400];
/*lucas-kanade光流法运算窗口,这里取3*3的窗口,可以尝试下5*5,区别就是5*5
出现aperture problem的几率较小,3*3运算量小,对于feature selection即shi-tomasi算法来说足够了*/
CvSize optical_flow_window = cvSize(5, 5);
// CvSize optical_flow_window = cvSize(5, 5);
/* 终止规则,当完成20次迭代或者当epsilon<=0.3,迭代终止,可以尝试下别的值*/
CvTermCriteria optical_flow_termination_criteria= cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3);
/*分配工作区域*/
allocateOnDemand(&pyramid1, frame_size, IPL_DEPTH_8U, 1);
allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH_8U, 1);
/*开始跑该算法*/
cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2,frame1_features, frame2_features, number_of_features,
optical_flow_window, 5, optical_flow_found_feature,optical_flow_feature_error, optical_flow_termination_criteria, 0);
/*画光流场,画图是依据两帧对应的特征值,
这个特征值就是图像上我们感兴趣的点,如边缘上的点P(x,y)*/
for (int i = 0; i< number_of_features; i++)
/* 如果没找到对应特征点 */
if (optical_flow_found_feature[i] == 0)
continue;
int line_thickness;
line_thickness = 1;
/* CV_RGB(red, green, blue) is the red, green, and blue components
* of the color you want, each out of 255.
*/
CvScalar line_color;
line_color = CV_RGB(255, 0, 0);
/*画箭头,因为帧间的运动很小,所以需要缩放,不然看不见箭头,缩放因子为3*/
CvPoint p, q;
p.x = (int)frame1_features[i].x;
p.y = (int)frame1_features[i].y;
q.x = (int)frame2_features[i].x;
q.y = (int)frame2_features[i].y;
double angle;
angle = atan2((double)p.y - q.y, (double)p.x - q.x);
double hypotenuse;
hypotenuse = sqrt(square(p.y - q.y) + square(p.x - q.x));
/*执行缩放*/
q.x = (int)(p.x - 5 * hypotenuse * cos(angle));
q.y = (int)(p.y - 5 * hypotenuse * sin(angle));
/*画箭头主线*/
/* "frame1"要在frame1上作画.
* "p" 线的开始点.
* "q" 线的终止点.
* "CV_AA" 反锯齿.
* "0" 没有小数位.
*/
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
/* 画箭的头部*/
p.x = (int)(q.x + 9 * cos(angle + pi / 4));
p.y = (int)(q.y + 9 * sin(angle + pi / 4));
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
p.x = (int)(q.x + 9 * cos(angle - pi / 4));
p.y = (int)(q.y + 9 * sin(angle - pi / 4));
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
/*显示图像*/
/*创建一个名为optical flow的窗口,大小自动改变*/
cvNamedWindow("Optical Flow", CV_WINDOW_NORMAL);
cvFlip(frame1, NULL, 2);
cvShowImage("Optical Flow", frame1);
/*延时,要不放不了*/
cvWaitKey(33);
/*写入到文件中去*/
// cv::Mat m = cv::cvarrToMat(frame1);//转换lpimgae到mat格式
// writer << m;//opencv3.0 version writer
cap.release();
cvWaitKey(33);
system("pause");
以上是关于#include "stdio.h" main() int a=5,b=-3,c=4; printf("%d%d\n",(++a,b++),c-2);的主要内容,如果未能解决你的问题,请参考以下文章
用VS15编写多文件程序的时候,c语言提示不允许使用不完整的类型
在C语言中#include "stdio.h"和#include <stdio.h>有啥区别?