POJ 1442(treap || 优先队列)
Posted jzdwajue
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1442(treap || 优先队列)相关的知识,希望对你有一定的参考价值。
Time Limit: 1000MS | Memory Limit: 10000KB | 64bit IO Format: %I64d & %I64u |
Description
Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions).
There are two types of transactions:
ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
N Transaction i Black Box contents after transaction Answer (elements are arranged by non-descending) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
Input
Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
Output
Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.
Sample Input
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
Sample Output
3 3 1 2
Hint
Source
treap套用模板就可以:
#include <iostream> #include <cstdio> #include <cstdlib> using namespace std; #define maxn 30000+5 int m,n; int a[maxn],b[maxn]; int val[maxn],ch[maxn][2],r[maxn],size[maxn],root,cnt,counts[maxn]; inline void pushup(int rt) { size[rt] = size[ch[rt][0]] + size[ch[rt][1]] + counts[rt]; } void rotate(int &x,int kind) { int y = ch[x][kind^1]; ch[x][kind^1] = ch[y][kind]; ch[y][kind] = x; pushup(x); pushup(y); x = y; } void newnode(int &rt, int v) { rt = ++ cnt; val[rt] = v; ch[rt][0] = ch[rt][1] = 0; size[rt] = counts[rt] = 1; r[rt] = rand(); } void insert(int &rt, int v) { if(rt == 0) { newnode(rt, v); return; } if(val[rt] == v) counts[rt] ++; else { int kind = (val[rt] < v); insert(ch[rt][kind], v); if(r[ch[rt][kind]] < r[rt]) rotate(rt, kind^1); } pushup(rt); } int select(int rt,int k) { if(size[ch[rt][0]] >= k) return select(ch[rt][0], k); if(size[ch[rt][0]] + counts[rt] >= k) return val[rt]; return select(ch[rt][1], k - size[ch[rt][0]] - counts[rt]); } int main() { root = 0; cnt = 0; while(scanf("%d%d",&n,&m) != EOF) { for(int i = 1;i <= n;i ++) scanf("%d", &a[i]); for(int j = 1;j <= m;j ++) scanf("%d", &b[j]); int k = 1; for(int i = 1;i <= n;i ++) { insert(root, a[i]); if(k > n) break; while(b[k] == i) { printf("%d\n",select(root, k)); k ++; } } } return 0; }
也能够使用优先队列来做,维护两个优先队列~
#include <iostream> #include <cstdio> #include <queue> #include <vector> using namespace std; #define maxn 30000 + 5 int main() { int n, m; priority_queue<int, vector<int>, greater<int> > q1; priority_queue<int, vector<int>, less<int> > q2; int a[maxn],b[maxn]; while(scanf("%d%d",&n, &m) != EOF) { while(!q1.empty()) q1.pop(); while(!q2.empty()) q2.pop(); for(int i = 1;i <= n;i ++) { scanf("%d", &a[i]); } for(int j = 1;j <= m;j ++) { scanf("%d", &b[j]); } int k = 1; for(int i = 1;i <= n;i ++) { if(!q1.empty()) { if(a[i] < q1.top()) q2.push(a[i]); else { q2.push(q1.top()); q1.pop(); q1.push(a[i]); } } else q2.push(a[i]); while(b[k] == i) { if(q2.size() == k) { printf("%d\n",q2.top()); } else if(q2.size() > k) { while(q2.size() != k) { q1.push(q2.top()); q2.pop(); } printf("%d\n",q2.top()); } else if(q2.size() < k) { while(q2.size() != k) { q2.push(q1.top()); q1.pop(); } printf("%d\n",q2.top()); } k++; } } } return 0; }
??
以上是关于POJ 1442(treap || 优先队列)的主要内容,如果未能解决你的问题,请参考以下文章
优先队列(堆)经典例题——poj1442 black fox