一个简单的时间片轮转多道程序内核操作系统工作流程
Posted claireyuancy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一个简单的时间片轮转多道程序内核操作系统工作流程相关的知识,希望对你有一定的参考价值。
一.操作系统工作概述
-
存储程序计算机工作模型,计算机系统最最基础性的逻辑结构;
-
函数调用堆栈,高级语言得以执行的基础;
-
中断。多道程序操作系统的基点。
二.代码分析
在上一篇博文《搭建OS kernel环境方法》的基础上进行时间片轮转多道程序的小os.
主要对mypcb.h, mymain.c 和myinterrupt.c这三个文件进行分析。
<pre name="code" class="cpp"><span style="font-size:12px;">//mypcb.h </span>
<span style="font-size:12px;">#define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread {//给任务定义一个eip和esp unsigned longip; unsigned longsp; }; typedef struct PCB{ int pid;//任务编号 volatile long state;/* -1 unrunnable, 0 runnable, >0 stopped */ char stack[KERNEL_STACK_SIZE]; //定义栈空间 /* CPU-specific state of this task */ struct Thread thread; //定义进程的结构体thread, 当中有eip和esp unsigned longtask_entry;//任务的函数起始处, 也就是任务第一次运行的起始位置 struct PCB *next;//一个任务链表, 指向下一个任务 }tPCB;</span>
//mymain.c #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" //引入当中两个结构体表示 tPCB task[MAX_TASK_NUM];//定义两个数组 tPCB * my_current_task = NULL; volatile int my_need_sched = 0;//定义是否调度, 1则调度, 0则不调度 void my_process(void); void __init my_start_kernel(void) //起始函数位置 { int pid = 0; int i; <strong>/* Initialize process 0*/</strong> task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; <strong>//0号进程栈在最開始的位置</strong> task[pid].next = &task[pid]; <strong> /*fork more process */</strong> for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB));//复制0号进程的结构形式 task[i].pid = i; task[i].state = -1;//初始的任务(除0号进程外)都设置成未运行 task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next;<strong>//新fork的进程加到进程链表的尾部, 该新建任务的next指向上一个任务的next,也就是自己(最后一个)</strong> task[i-1].next = &task[i]; <strong>//配置上一个任务的next指向这时候新创建的任务</strong> } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid];//先让0号进程先运行 <strong> asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp ,当前esp=ebp*/ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ "popl %%ebp\n\t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)/* input c or d mean %ecx/%edx*/ );</strong> } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1)//推断是否调度。该值可有itnerrupt.c中的函数来配置 { my_need_sched = 0; my_schedule(); //主动调动的机制 } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
//myinterrupt.c #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { #if 1 if(time_count%1000 == 0 && my_need_sched != 1)//时钟中断1000次的时候,调度一次, 配置调度值为1 { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; #endif return; } void my_schedule(void) //<span style="color:#ff0000;">调度函数, 核心函数</span> { tPCB * next;//定义两个指针 tPCB * prev; if(my_current_task == NULL //当前进程和下一进程为空, 即没有任务, 返回 || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); <strong><span style="color:#ff0000;">/* 在调度函数中, next指向的是下一个将要被调度的任务, prev指向的是当前正在运行的任务*/</span></strong> /* schedule */ next = my_current_task->next;//把当前进程的下一个进程赋值给next。当前进程赋值给prev prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { //<strong>假设下一个任务不是第一次被调度, 则运行,下一个进程<span style="color:#ff0000;">有进程上下文</span></strong> /* switch to next process */ <span style="color:#ff0000;">asm volatile( "pushl %%ebp\n\t" /* save 当前进程 ebp */ "movl %%esp,%0\n\t" /* save 当前 esp 赋值到prev.thread.sp */ "movl %2,%%esp\n\t" /* restore 下一个进程的sp到 esp */ "movl $1f,%1\n\t" /*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处開始继续运行</strong> */ /* 启动下一个进程*/ "pushl %3\n\t" /*保存下一个进程eip保存到栈里面*/ "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); </span> my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); } else { <strong> //下一个进程为第一次运行时,<span style="color:#ff0000;">没有进程上下文</span>, 则以以下这样的方式来处理</strong> next->state = 0; my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to new process */ <span style="color:#ff0000;">asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */x` "movl %2,%%esp\n\t" /* restore esp */ "movl %2,%%ebp\n\t" /* restore ebp */ "movl $1f,%1\n\t" /*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处開始继续运行</strong> */ /* 启动下一个进程*/ "pushl %3\n\t" "ret\n\t" /* restore eip */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); </span> } return; }
借用还有一篇博文,以新任务切换为例进行堆栈变化分析:
author: 于凯
參考课程:《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
以上是关于一个简单的时间片轮转多道程序内核操作系统工作流程的主要内容,如果未能解决你的问题,请参考以下文章
Linux内核分析—完成一个简单的时间片轮转多道程序内核代码
linux内核分析作业:操作系统是如何工作的进行:完成一个简单的时间片轮转多道程序内核代码