Scrapy

Posted 红领巾下的大刀疤

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Scrapy相关的知识,希望对你有一定的参考价值。

一、安装

Linux
      pip3 install scrapy
 
 
Windows
      a. pip3 install wheel
      b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
      c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
      d. pip3 install scrapy
      e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/

 二、简介

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
 

Scrapy主要包括了以下组件:


  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:


    1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
    2. 引擎把URL封装成一个请求(Request)传给下载器
    3. 下载器把资源下载下来,并封装成应答包(Response)
    4. 爬虫解析Response
    5. 解析出实体(Item),则交给实体管道进行进一步的处理
    6. 解析出的是链接(URL),则把URL交给调度器等待抓取

 三、基本使用

1.使用流程

1.创建项目
scrapy startproject 项目名称
   - 在当前目录中创建中创建一个项目文件(类似于Django)

2.创建爬虫应用
scrapy genspider 爬虫名字 主页
   - 创建爬虫应用
例如: scrapy gensipider -t basic oldboy oldboy.com
  scrapy gensipider -t xmlfeed autohome autohome.com.cn

 查看所有命令:scrapy gensipider -l
 查看模板命令:scrapy gensipider -d 模板名称
3,用pycharm打开项目目录
  会创建很多文件

文件说明:

  • scrapy.cfg  项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫模板目录,如:创建文件,编写爬虫规则  
3.查看爬虫应用列表
scrapy list
4.配置
   settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
  
 
4.运行爬虫应用
  scrapy crawl 爬虫应用名称 --nolog#不加日志

 2.程序实例

#打开spiders/应用  
#一般创建爬虫文件时,以网站域名命名    
import scrapy
class XiaoHuarSpider(scrapy.spiders.Spider): name = "xiaohuar" # 爬虫名称 ***** allowed_domains = ["xiaohuar.com"] # 允许的域名 start_urls = [ "http://www.xiaohuar.com/hua/", # 其实URL ] def parse(self, response): # 访问起始URL并获取结果后的回调函数

 

 3.小试牛刀

import scrapy
from scrapy.selector import htmlXPathSelector
from scrapy.http.request import Request
 
 
class DigSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "dig"
 
    # 允许的域名
    allowed_domains = ["chouti.com"]
 
    # 起始URL
    start_urls = [
        \'http://dig.chouti.com/\',
    ]
 
    has_request_set = {}
 
    def parse(self, response):
        print(response.url)
 
        hxs = HtmlXPathSelector(response)
        page_list = hxs.select(\'//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\\d+")]/@href\').extract()
        for page in page_list:
            page_url = \'http://dig.chouti.com%s\' % page
            key = self.md5(page_url)
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = page_url
                obj = Request(url=page_url, method=\'GET\', callback=self.parse)
                yield obj
 
    @staticmethod
    def md5(val):
        import hashlib
        ha = hashlib.md5()
        ha.update(bytes(val, encoding=\'utf-8\'))
        key = ha.hexdigest()
        return key
View Code
#重写start请求函数制定处理函数
def start_requests(self):
    for url in self.start_urls:
        yield  Request(url,callback=self.next)
def next(self):
    pass

总结:

  • Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
  • HtmlXpathSelector用于结构化HTML代码并提供选择器功能

 三、 选择器(类似于标签选择器)

# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html>
    <head lang="en">
        <meta charset="UTF-8">
        <title></title>
    </head>
    <body>
        <ul>
            <li class="item-"><a id=\'i1\' href="link.html">first item</a></li>
            <li class="item-0"><a id=\'i2\' href="llink.html">first item</a></li>
            <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
        </ul>
        <div><a href="llink2.html">second item</a></div>
    </body>
</html>
"""
response = HtmlResponse(url=\'http://example.com\', body=html,encoding=\'utf-8\')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath(\'//a\')
找到所有a标签 # print(hxs) # hxs
= Selector(response=response).xpath(\'//a[2]\')
找到a标签 # print(hxs) # hxs
= Selector(response=response).xpath(\'//a[@id]\')
找到a标签有id的 # print(hxs) # hxs
= Selector(response=response).xpath(\'//a[@id="i1"]\')
找到a标签切id=il的 # print(hxs) # hxs
= Selector(response=response).xpath(\'//a[@href="link.html"][@id="i1"]\')
找到a标签 href=
link.html 且 id =il
# print(hxs) 
# hxs
= Selector(response=response).xpath(\'//a[contains(@href, "link")]\')
# print(hxs)
# hxs
= Selector(response=response).xpath(\'//a[starts-with(@href, "link")]\')
# print(hxs) #
hxs
= Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]\')
# print(hxs) # hxs
= Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]/text()\').extract()
# print(hxs)
# hxs
= Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]/@href\').extract()
# print(hxs)
# hxs
= Selector(response=response).xpath(\'/html/body/ul/li/a/@href\').extract()
# print(hxs)
# hxs
= Selector(response=response).xpath(\'//body/ul/li/a/@href\').extract_first()
# print(hxs)
# ul_list
= Selector(response=response).xpath(\'//body/ul/li\')
#
for item in ul_list:
  # v
= item.xpath(\'./a/span\') #
  # 或 #
# v
= item.xpath(\'a/span\') #
# 或 #
# v
= item.xpath(\'*/a/span\')
# print(v)
# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequest


class ChouTiSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "chouti"
    # 允许的域名
    allowed_domains = ["chouti.com"]

    cookie_dict = {}
    has_request_set = {}

    def start_requests(self):
        url = \'http://dig.chouti.com/\'
        # return [Request(url=url, callback=self.login)]
        yield Request(url=url, callback=self.login)

    def login(self, response):
        cookie_jar = CookieJar()
        cookie_jar.extract_cookies(response, response.request)
        for k, v in cookie_jar._cookies.items():
            for i, j in v.items():
                for m, n in j.items():
                    self.cookie_dict[m] = n.value

        req = Request(
            url=\'http://dig.chouti.com/login\',
            method=\'POST\',
            headers={\'Content-Type\': \'application/x-www-form-urlencoded; charset=UTF-8\'},
            body=\'phone=8615131255089&password=pppppppp&oneMonth=1\',
            cookies=self.cookie_dict,
            callback=self.check_login
        )
        yield req

    def check_login(self, response):
        req = Request(
            url=\'http://dig.chouti.com/\',
            method=\'GET\',
            callback=self.show,
            cookies=self.cookie_dict,
            dont_filter=True
        )
        yield req

    def show(self, response):
        # print(response)
        hxs = HtmlXPathSelector(response)
        news_list = hxs.select(\'//div[@id="content-list"]/div[@class="item"]\')
        for new in news_list:
            # temp = new.xpath(\'div/div[@class="part2"]/@share-linkid\').extract()
            link_id = new.xpath(\'*/div[@class="part2"]/@share-linkid\').extract_first()
            yield Request(
                url=\'http://dig.chouti.com/link/vote?linksId=%s\' %(link_id,),
                method=\'POST\',
                cookies=self.cookie_dict,
                callback=self.do_favor
            )

        page_list = hxs.select(\'//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\\d+")]/@href\').extract()
        for page in page_list:

            page_url = \'http://dig.chouti.com%s\' % page
            import hashlib
            hash = hashlib.md5()
            hash.update(bytes(page_url,encoding=\'utf-8\'))
            key = hash.hexdigest()
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = page_url
                yield Request(
                    url=page_url,
                    method=\'GET\',
                    callback=self.show
                )

    def do_favor(self, response):
        print(response.text)

示例:自动登陆抽屉并点赞
自动登陆抽屉并点赞
 -*- coding: utf-8 -*-
import scrapy
import sys,io
from scrapy.http import Request
from scrapy.selector import Selector, HtmlXPathSelector
from ..items import ChoutiItem
# 用于定位标签
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding=\'gb18030\')
from scrapy.http.cookies import CookieJar
class ChoutiSpider(scrapy.Spider):
    name = "chouti"
    allowed_domains = ["chouti.com"]
    # allowed_domains = ["chouti.com",baidu.com]   域名限制
    start_urls = [\'http://dig.chouti.com/\']
    cookie_dict=None
    def parse(self, response):
        cookie_obj=CookieJar()
        cookie_obj.extract_cookies(response,response.request)
        # response.request返回是访问对象
        self.cookie_dict=cookie_obj._cookies
        # 带上用户名密码+cookie
        yield Request(
            url="http://dig.chouti.com/login",
            method=\'POST\',
            body="phone=8618731008140&password=cuiyuetian1988&oneMonth=1",
            headers={\'Content-Type\':\'application/x-www-form-urlencoded; charset=UTF-8\'},
            cookies=cookie_obj._cookies,
            callback=self.check_login
        )
    def check_login(self,response):
        \'\'\'查看登录结果\'\'\'
        print(response.text)
        yield Request(url=\'http://dig.chouti.com/\',callback=self.like)

    def like(self,response):
        \'\'\'点赞\'\'\'
        id_list = Selector(response=response).xpath(\'//div[@share-linkid]/@share-linkid\').extract()
        for nid in id_list:
            print(nid)
            url = "http://dig.chouti.com/link/vote?linksId=%s" % nid
            yield Request(
                url=url,
                method="POST",
                cookies=self.cookie_dict,
                callback=self.show
            )
            page_urls=Selector(response=response).xpath(\'//div[@id="dig_lcpage"]//a/@href\').extract()
            for page in page_urls:
                url = "http://dig.chouti.com%s" % page
                yield Request(url=url, callback=self.like)



    def show(self,response):
        print(response.text)
我写哟

 

四、 格式化处理(items.py)

上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

# -*- coding: utf-8 -*-
import scrapy,io,sys
from scrapy.http import Request
from scrapy.selector import Selector, HtmlXPathSelector
# sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding=\'gb18030\')

from ..items import Xiaohua
class XiaohuSpider(scrapy.Spider):
    name=\'xiaohua\'
    allowed_domains = ["xiaohuar.com"]
    start_urls = [\'http://xiaohuar.com/hua/\']
    vis=set()
    def parse(self, response):
        res=Selector(response=response).xpath(\'//div[@id="list_img"]//div[@class="item_t"]\')
        for obj in res:
            src=obj.xpath(\'.//div[@class="img"]//img/@src\').extract_first().strip()
            name=obj.xpath(\'.//div[@class="img"]/span/text()\').extract_first().strip()
            src=\'http://xiaohuar.com%s\'%(src)
            item_obj=Xiaohua(src=src,name=name)
            yield item_obj
        res2=Selector(response=response).xpath(\'//div[@id="page"]//a/@href\')
        for url in res2:
            if not url:
                continue     
            md_url = self.md5(url.extract())
            if md_url in self.vis:
                pass
            else:
                self.vis.add(md_url)
                url = url.extract()
                print(url)
                yield Request(url=url,callback=self.parse)
    def md5(self,url):
        import hashlib
        obj=hashlib.md5()
        obj.update(bytes(url, encoding=\'utf-8\'))
        return obj.hexdigest()
spiders/xiahuar.py
import scrapy


class Xiaohua(scrapy.Item):
    src=scrapy.Field()
    name=scrapy.Field()
items

 

import json
import os
import requests
class Myxiaohua(object):
     def __init__(self):
            if not os.path.exists(\'imgs\'):
                os.makedirs(\'imgs\')
    def process_item(self, item, spider):
        name="%s.jpg"%item[\'name\']
        print(item[\'src\'])
        res = requests.get(item[\'src\'], stream=True)
        res.encoding=\'utf-8\'
       with open(os.path.join(\'imgs\',name),\'wb\') as f :
            f.write(res.content)
        return item
pipelines
ITEM_PIPELINES = {
   \'myscrapy1.pipelines.Myscrapy1Pipeline\': 300,
   \'myscrapy1.pipelines.Myxiaohua\': 300,

}

#ITEM_PIPELINES = {
 #  \'spider1.pipelines.JsonPipeline\': 100,
   #\'spider1.pipelines.FilePipeline\': 300,
#}
# 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。
setting

 

五、自定制命令

  • 在spiders同级创建任意目录,如:commands
  • 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
  • 待续。。。。

六、自定义扩展

自定义扩展时,利用信号在指定位置注册制定操作

extensions
EXTENSIONS = {
   # \'scrapy.extensions.telnet.TelnetConsole\': None,
\'myscrapy1.extensions.MyExtend\': 300,
}
setting

七、自定义避免重复访问

 scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:

DUPEFILTER_CLASS = \'scrapy.dupefilter.RFPDupeFilter\'
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen

 

 

class RepeatUrl:
    def __init__(self):
        self.visited_url = set()

    @classmethod
    def from_settings(cls, settings):
        """
        初始化时,调用
        :param settings: 
        :return: 
        """
        return cls()

    def request_seen(self, request):
        """
        检测当前请求是否已经被访问过
        :param request: 
        :return: True表示已经访问过;False表示未访问过
        """
        if request.url in self.visited_url:
            return True
        self.visited_url.add(request.url)
        return False

    def open(self):
        """
        开始爬去请求时,调用
        :return: 
        """
        print(\'open replication\')

    def close(self, reason):
        """
        结束爬虫爬取时,调用
        :param reason: 
        :return: 
        """
        print(\'close replication\')

    def log(self, request, spider):
        """
        记录日志
        :param request: 
        :param spider: 
        :return: 
        """
        print(\'repeat\', request.url)

自定义URL去重操作
说明

 

# from scrapy.dupefilters import RFPDupeFilter
class RepeatFilter(object):
    def __init__(self):
        self.visited_set=set()

    @classmethod
    def from_settings(cls, settings):

        return cls()

    def request_seen(self, request):
        if request.url in self.visited_set:
            return True

        self.visited_set.add(request.url)
        return False

    def open(self):  # can return deferred
        print(\'start...\')
        pass

    def close(self, reason):  # can return a deferred
        print(\'close...\')
        pass

    def log(self, request, spider):  # log that a request has been filtered
        pass
myduplication.py
DUPEFILTER_CLASS=\'myscrapy1.myduplication.RepeatFilter\'
setting

 

  八、其他

# -*- coding: utf-8 -*-

# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

# 1. 爬虫名称
BOT_NAME = \'step8_king\'

# 2. 爬虫应用路径
SPIDER_MODULES = [\'step8_king.spiders\']
NEWSPIDER_MODULE = \'step8_king.spiders\'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头客户端 user-agent请求头会带着你的BOT_NAME
# USER_AGENT = \'step8_king (+http://www.yourdomain.com)\'

# 可以进行伪装成浏览器USER_AGENT = \'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36\'


# Obey robots.txt rules
# 4. 禁止爬虫配置是否遵循反爬虫规则
# ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数(根据反爬虫能力制定并发)
# CONCURRENT_REQUESTS = 4

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2


# The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRE

以上是关于Scrapy的主要内容,如果未能解决你的问题,请参考以下文章

Scrapy Spider没有返回所有元素

Python之Scrapy安装

如何使用scrapy Selector获取节点的innerHTML?

Scrapy爬虫:scrapy架构及原理

python爬虫scrapy之scrapy终端(Scrapy shell)

Scrapy研究探索——Scrapy核心架构与代码执行分析