Scrapy
Posted 红领巾下的大刀疤
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Scrapy相关的知识,希望对你有一定的参考价值。
一、安装
Linux pip3 install scrapy Windows a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install scrapy e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
二、简介
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
三、基本使用
1.使用流程
1.创建项目 scrapy startproject 项目名称 - 在当前目录中创建中创建一个项目文件(类似于Django)
2.创建爬虫应用
scrapy genspider 爬虫名字 主页
-
创建爬虫应用
例如:
scrapy gensipider
-
t basic oldboy oldboy.com
scrapy gensipider
-
t xmlfeed autohome autohome.com.cn
查看所有命令:scrapy gensipider
-
l
查看模板命令:scrapy gensipider
-
d 模板名称
3,用pycharm打开项目目录

文件说明:
- scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines 数据处理行为,如:一般结构化的数据持久化
- settings.py 配置文件,如:递归的层数、并发数,延迟下载等
- spiders 爬虫模板目录,如:创建文件,编写爬虫规则
3.查看爬虫应用列表
scrapy
list
4.配置
settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
4.运行爬虫应用
scrapy crawl 爬虫应用名称 --nolog#不加日志
2.程序实例
#打开spiders/应用
#一般创建爬虫文件时,以网站域名命名
import scrapy class XiaoHuarSpider(scrapy.spiders.Spider): name = "xiaohuar" # 爬虫名称 ***** allowed_domains = ["xiaohuar.com"] # 允许的域名 start_urls = [ "http://www.xiaohuar.com/hua/", # 其实URL ] def parse(self, response): # 访问起始URL并获取结果后的回调函数
3.小试牛刀

import scrapy from scrapy.selector import htmlXPathSelector from scrapy.http.request import Request class DigSpider(scrapy.Spider): # 爬虫应用的名称,通过此名称启动爬虫命令 name = "dig" # 允许的域名 allowed_domains = ["chouti.com"] # 起始URL start_urls = [ \'http://dig.chouti.com/\', ] has_request_set = {} def parse(self, response): print(response.url) hxs = HtmlXPathSelector(response) page_list = hxs.select(\'//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\\d+")]/@href\').extract() for page in page_list: page_url = \'http://dig.chouti.com%s\' % page key = self.md5(page_url) if key in self.has_request_set: pass else: self.has_request_set[key] = page_url obj = Request(url=page_url, method=\'GET\', callback=self.parse) yield obj @staticmethod def md5(val): import hashlib ha = hashlib.md5() ha.update(bytes(val, encoding=\'utf-8\')) key = ha.hexdigest() return key
#重写start请求函数制定处理函数 def start_requests(self): for url in self.start_urls: yield Request(url,callback=self.next) def next(self): pass
总结:
- Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
- HtmlXpathSelector用于结构化HTML代码并提供选择器功能
三、 选择器(类似于标签选择器)
# -*- coding:utf-8 -*- from scrapy.selector import Selector, HtmlXPathSelector from scrapy.http import HtmlResponse html = """<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <ul> <li class="item-"><a id=\'i1\' href="link.html">first item</a></li> <li class="item-0"><a id=\'i2\' href="llink.html">first item</a></li> <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li> </ul> <div><a href="llink2.html">second item</a></div> </body> </html> """ response = HtmlResponse(url=\'http://example.com\', body=html,encoding=\'utf-8\') # hxs = HtmlXPathSelector(response) # print(hxs) # hxs = Selector(response=response).xpath(\'//a\')
找到所有a标签 # print(hxs) # hxs = Selector(response=response).xpath(\'//a[2]\')
找到a标签 # print(hxs) # hxs = Selector(response=response).xpath(\'//a[@id]\')
找到a标签有id的 # print(hxs) # hxs = Selector(response=response).xpath(\'//a[@id="i1"]\')
找到a标签切id=il的 # print(hxs) # hxs = Selector(response=response).xpath(\'//a[@href="link.html"][@id="i1"]\')
找到a标签 href=link.html 且 id =il
# print(hxs)
# hxs = Selector(response=response).xpath(\'//a[contains(@href, "link")]\')
# print(hxs)
# hxs = Selector(response=response).xpath(\'//a[starts-with(@href, "link")]\')
# print(hxs) #
hxs = Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]\')
# print(hxs) # hxs = Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]/text()\').extract()
# print(hxs)
# hxs = Selector(response=response).xpath(\'//a[re:test(@id, "i\\d+")]/@href\').extract()
# print(hxs)
# hxs = Selector(response=response).xpath(\'/html/body/ul/li/a/@href\').extract()
# print(hxs)
# hxs = Selector(response=response).xpath(\'//body/ul/li/a/@href\').extract_first()
# print(hxs)
# ul_list = Selector(response=response).xpath(\'//body/ul/li\')
# for item in ul_list:
# v = item.xpath(\'./a/span\') #
# 或 #
# v = item.xpath(\'a/span\') #
# 或 #
# v = item.xpath(\'*/a/span\')
# print(v)

# -*- coding: utf-8 -*- import scrapy from scrapy.selector import HtmlXPathSelector from scrapy.http.request import Request from scrapy.http.cookies import CookieJar from scrapy import FormRequest class ChouTiSpider(scrapy.Spider): # 爬虫应用的名称,通过此名称启动爬虫命令 name = "chouti" # 允许的域名 allowed_domains = ["chouti.com"] cookie_dict = {} has_request_set = {} def start_requests(self): url = \'http://dig.chouti.com/\' # return [Request(url=url, callback=self.login)] yield Request(url=url, callback=self.login) def login(self, response): cookie_jar = CookieJar() cookie_jar.extract_cookies(response, response.request) for k, v in cookie_jar._cookies.items(): for i, j in v.items(): for m, n in j.items(): self.cookie_dict[m] = n.value req = Request( url=\'http://dig.chouti.com/login\', method=\'POST\', headers={\'Content-Type\': \'application/x-www-form-urlencoded; charset=UTF-8\'}, body=\'phone=8615131255089&password=pppppppp&oneMonth=1\', cookies=self.cookie_dict, callback=self.check_login ) yield req def check_login(self, response): req = Request( url=\'http://dig.chouti.com/\', method=\'GET\', callback=self.show, cookies=self.cookie_dict, dont_filter=True ) yield req def show(self, response): # print(response) hxs = HtmlXPathSelector(response) news_list = hxs.select(\'//div[@id="content-list"]/div[@class="item"]\') for new in news_list: # temp = new.xpath(\'div/div[@class="part2"]/@share-linkid\').extract() link_id = new.xpath(\'*/div[@class="part2"]/@share-linkid\').extract_first() yield Request( url=\'http://dig.chouti.com/link/vote?linksId=%s\' %(link_id,), method=\'POST\', cookies=self.cookie_dict, callback=self.do_favor ) page_list = hxs.select(\'//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\\d+")]/@href\').extract() for page in page_list: page_url = \'http://dig.chouti.com%s\' % page import hashlib hash = hashlib.md5() hash.update(bytes(page_url,encoding=\'utf-8\')) key = hash.hexdigest() if key in self.has_request_set: pass else: self.has_request_set[key] = page_url yield Request( url=page_url, method=\'GET\', callback=self.show ) def do_favor(self, response): print(response.text) 示例:自动登陆抽屉并点赞

-*- coding: utf-8 -*- import scrapy import sys,io from scrapy.http import Request from scrapy.selector import Selector, HtmlXPathSelector from ..items import ChoutiItem # 用于定位标签 sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding=\'gb18030\') from scrapy.http.cookies import CookieJar class ChoutiSpider(scrapy.Spider): name = "chouti" allowed_domains = ["chouti.com"] # allowed_domains = ["chouti.com",baidu.com] 域名限制 start_urls = [\'http://dig.chouti.com/\'] cookie_dict=None def parse(self, response): cookie_obj=CookieJar() cookie_obj.extract_cookies(response,response.request) # response.request返回是访问对象 self.cookie_dict=cookie_obj._cookies # 带上用户名密码+cookie yield Request( url="http://dig.chouti.com/login", method=\'POST\', body="phone=8618731008140&password=cuiyuetian1988&oneMonth=1", headers={\'Content-Type\':\'application/x-www-form-urlencoded; charset=UTF-8\'}, cookies=cookie_obj._cookies, callback=self.check_login ) def check_login(self,response): \'\'\'查看登录结果\'\'\' print(response.text) yield Request(url=\'http://dig.chouti.com/\',callback=self.like) def like(self,response): \'\'\'点赞\'\'\' id_list = Selector(response=response).xpath(\'//div[@share-linkid]/@share-linkid\').extract() for nid in id_list: print(nid) url = "http://dig.chouti.com/link/vote?linksId=%s" % nid yield Request( url=url, method="POST", cookies=self.cookie_dict, callback=self.show ) page_urls=Selector(response=response).xpath(\'//div[@id="dig_lcpage"]//a/@href\').extract() for page in page_urls: url = "http://dig.chouti.com%s" % page yield Request(url=url, callback=self.like) def show(self,response): print(response.text)
四、 格式化处理(items.py)
上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

# -*- coding: utf-8 -*- import scrapy,io,sys from scrapy.http import Request from scrapy.selector import Selector, HtmlXPathSelector # sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding=\'gb18030\') from ..items import Xiaohua class XiaohuSpider(scrapy.Spider): name=\'xiaohua\' allowed_domains = ["xiaohuar.com"] start_urls = [\'http://xiaohuar.com/hua/\'] vis=set() def parse(self, response): res=Selector(response=response).xpath(\'//div[@id="list_img"]//div[@class="item_t"]\') for obj in res: src=obj.xpath(\'.//div[@class="img"]//img/@src\').extract_first().strip() name=obj.xpath(\'.//div[@class="img"]/span/text()\').extract_first().strip() src=\'http://xiaohuar.com%s\'%(src) item_obj=Xiaohua(src=src,name=name) yield item_obj res2=Selector(response=response).xpath(\'//div[@id="page"]//a/@href\') for url in res2: if not url: continue md_url = self.md5(url.extract()) if md_url in self.vis: pass else: self.vis.add(md_url) url = url.extract() print(url) yield Request(url=url,callback=self.parse) def md5(self,url): import hashlib obj=hashlib.md5() obj.update(bytes(url, encoding=\'utf-8\')) return obj.hexdigest()

import scrapy class Xiaohua(scrapy.Item): src=scrapy.Field() name=scrapy.Field()

import json import os import requests class Myxiaohua(object): def __init__(self): if not os.path.exists(\'imgs\'): os.makedirs(\'imgs\') def process_item(self, item, spider): name="%s.jpg"%item[\'name\'] print(item[\'src\']) res = requests.get(item[\'src\'], stream=True) res.encoding=\'utf-8\' with open(os.path.join(\'imgs\',name),\'wb\') as f : f.write(res.content) return item

ITEM_PIPELINES = { \'myscrapy1.pipelines.Myscrapy1Pipeline\': 300, \'myscrapy1.pipelines.Myxiaohua\': 300, } #ITEM_PIPELINES = { # \'spider1.pipelines.JsonPipeline\': 100, #\'spider1.pipelines.FilePipeline\': 300, #} # 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。
五、自定制命令
- 在spiders同级创建任意目录,如:commands
- 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
- 待续。。。。
六、自定义扩展
自定义扩展时,利用信号在指定位置注册制定操作


EXTENSIONS = { # \'scrapy.extensions.telnet.TelnetConsole\': None, \'myscrapy1.extensions.MyExtend\': 300, }
七、自定义避免重复访问
scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:
DUPEFILTER_CLASS = \'scrapy.dupefilter.RFPDupeFilter\' DUPEFILTER_DEBUG = False JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen

class RepeatUrl: def __init__(self): self.visited_url = set() @classmethod def from_settings(cls, settings): """ 初始化时,调用 :param settings: :return: """ return cls() def request_seen(self, request): """ 检测当前请求是否已经被访问过 :param request: :return: True表示已经访问过;False表示未访问过 """ if request.url in self.visited_url: return True self.visited_url.add(request.url) return False def open(self): """ 开始爬去请求时,调用 :return: """ print(\'open replication\') def close(self, reason): """ 结束爬虫爬取时,调用 :param reason: :return: """ print(\'close replication\') def log(self, request, spider): """ 记录日志 :param request: :param spider: :return: """ print(\'repeat\', request.url) 自定义URL去重操作

# from scrapy.dupefilters import RFPDupeFilter class RepeatFilter(object): def __init__(self): self.visited_set=set() @classmethod def from_settings(cls, settings): return cls() def request_seen(self, request): if request.url in self.visited_set: return True self.visited_set.add(request.url) return False def open(self): # can return deferred print(\'start...\') pass def close(self, reason): # can return a deferred print(\'close...\') pass def log(self, request, spider): # log that a request has been filtered pass

DUPEFILTER_CLASS=\'myscrapy1.myduplication.RepeatFilter\'
八、其他
# -*- coding: utf-8 -*- # Scrapy settings for step8_king project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html # 1. 爬虫名称 BOT_NAME = \'step8_king\' # 2. 爬虫应用路径 SPIDER_MODULES = [\'step8_king.spiders\'] NEWSPIDER_MODULE = \'step8_king.spiders\' # Crawl responsibly by identifying yourself (and your website) on the user-agent # 3. 客户端 user-agent请求头客户端 user-agent请求头会带着你的BOT_NAME # USER_AGENT = \'step8_king (+http://www.yourdomain.com)\' # 可以进行伪装成浏览器USER_AGENT = \'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36\' # Obey robots.txt rules # 4. 禁止爬虫配置是否遵循反爬虫规则 # ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) # 5. 并发请求数(根据反爬虫能力制定并发) # CONCURRENT_REQUESTS = 4 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # 6. 延迟下载秒数 # DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of: # 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名 # CONCURRENT_REQUESTS_PER_DOMAIN = 2 # 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP # CONCURRE以上是关于Scrapy的主要内容,如果未能解决你的问题,请参考以下文章
如何使用scrapy Selector获取节点的innerHTML?