POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)
Posted zsychanpin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)相关的知识,希望对你有一定的参考价值。
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 38980 | Accepted: 17119 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN)
be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
Source
Northeastern Europe 2002, Far-Eastern Subregion
n*n算法
#include<iostream> #include<algorithm> #include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> using namespace std; int n; int a[1001]; int dp[1010]; int main() { while(scanf("%d",&n)!=EOF) { int maxx = -1; for(int i=0;i<n;i++) { scanf("%d",&a[i]); } for(int i=0;i<n;i++) { dp[i] = 1; for(int j=0;j<i;j++) { if(a[i]>a[j] && dp[j]+1>dp[i]) { dp[i] = dp[j] + 1; } } if(maxx < dp[i]) { maxx = dp[i]; } } printf("%d\n",maxx); } return 0; }
n*logn算法:
#include<iostream> #include<algorithm> #include<stdio.h> #include<string.h> #include<stdlib.h> #define inf 999999 using namespace std; int n; int dp[1010]; int a[1010]; int res(int len,int num) { int l = 0,r = len; while(l!=r) { int mid = (l+r)>>1; if(dp[mid] == num) { return mid; } else if(dp[mid]<num) { l = mid + 1; } else if(dp[mid]>num) { r = mid; } } return l; } int main() { while(scanf("%d",&n)!=EOF) { for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } int len = 1; dp[0] = -1; for(int i=1;i<=n;i++) { dp[i] = inf; int k = res(len,a[i]); if(k == len) { len++; } dp[k] = a[i]; } printf("%d\n",len-1); } return 0; }
以上是关于POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)的主要内容,如果未能解决你的问题,请参考以下文章
POJ 2533 Longest Ordered Subsequence
POJ2533:Longest Ordered Subsequence
POJ 2533 Longest Ordered Subsequence(裸LIS)
poj 2533 Longest Ordered Subsequence(LIS)