Fast算法原理:fastica算法步骤详解

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Fast算法原理:fastica算法步骤详解相关的知识,希望对你有一定的参考价值。

参考技术A 1. Fast算法原理

我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法,并在2010年对其进行了修正。

FAST (全称Features from accelerated segment test)是一种用于角点检测的算法,该算法的原理是取图像中检测点,以该点为圆心的周围邻域内像素点判断检测点是否为角点,通俗的讲就是若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点。

1. 1 FAST算法的基本流程

在图像中选取一个像素点 p,来判断它是不是关键点。$$I_p$$等于像素点 p的灰度值。

以r为半径画圆,覆盖p点周围的M个像素,通常情狂下,设置 r=3,则 M=16,如下图所示:

设置一个阈值t,如果在这 16 个像素点中存在 n 个连续像素点的灰度值都高于$$I_p + t$$,或者低于$$I_p - t$$,那么像素点 p 就被认为是一个角点。如上图中的虚线所示,n 一般取值为 12。

由于在检测特征点时是需要对图像中所有的像素点进行检测,然而图像中的绝大多数点都不是特征点,如果对每个像素点都进行上述的检测过程,那显然会浪费许多时间,因此采用一种进行非特征点判别的方法:首先对候选点的周围每个 90 度的点:1,9,5,13 进行测试(先测试 1 和 19, 如果它们符合阈值要求再测试 5 和 13)。如果 p 是角点,那么这四个点中至少有 3 个要符合阈值要求,否则直接剔除。对保留下来的点再继续进行测试(是否有 12 的点符合阈值要求)。

虽然这个检测器的效率很高,但它有以下几条缺点:

·获得的候选点比较多

·特征点的选取不是最优的,因为它的效果取决与要解决的问题和角点的分布情况。

·进行非特征点判别时大量的点被丢弃

·检测到的很多特征点都是相邻的

前 3 个问题可以通过机器学习的方法解决,最后一个问题可以使用非最大值抑制的方法解决。

1. 2 机器学习的角点检测器

选择一组训练图片(最好是跟最后应用相关的图片)

使用 FAST 算法找出每幅图像的特征点,对图像中的每一个特征点,将其周围的 16 个像素存储构成一个向量P。

每一个特征点的 16 像素点都属于下列三类中的一种

根据这些像素点的分类,特征向量 P 也被分为 3 个子集:Pd ,Ps ,Pb,

定义一个新的布尔变量$$K_p$$,如果 p 是角点就设置为 Ture,如果不是就设置为 False。

利用特征值向量p,目标值是$K_p$,训练ID3 树(决策树分类器)。

将构建好的决策树运用于其他图像的快速的检测。

1. 3 非极大值抑制

在筛选出来的候选角点中有很多是紧挨在一起的,需要通过非极大值抑制来消除这种影响。

为所有的候选角点都确定一个打分函数$$V $$ , $$V $$的值可这样计算:先分别计算$$I_p$$与圆上16个点的像素值差值,取绝对值,再将这16个绝对值相加,就得到了$$V $$的值

最后比较毗邻候选角点的 V 值,把V值较小的候选角点pass掉。

FAST算法的思想与我们对角点的直观认识非常接近,化繁为简。FAST算法比其它角点的检测算法快,但是在噪声较高时不够稳定,这需要设置合适的阈值。

2.Fast实现

OpenCV中的FAST检测算法是用传统方法实现的,

1.实例化fast

参数:

·threshold:阈值t,有默认值10

·nonmaxSuppression:是否进行非极大值抑制,默认值True

返回:

Fast:创建的FastFeatureDetector对象

2.利用fast.detect检测关键点,没有对应的关键点描述

参数:

gray: 进行关键点检测的图像,注意是灰度图像

返回:

kp: 关键点信息,包括位置,尺度,方向信息

3.将关键点检测结果绘制在图像上,与在sift中是一样的

示例:

结果:

6. 目标检测算法之Fast R-CNN算法详解

6. 目标检测算法之Fast R-CNN算法详解(转)

原文链接:https://www.cnblogs.com/zyly/p/9246418.html

 


Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题:

  • 训练分多步。通过上一篇博文我们知道R-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。
  • 时间和内存消耗比较大。在训练SVM和回归的时候需要用网络训练的特征作为输入,特征保存在磁盘上再读入的时间消耗还是比较大的。
  • 测试的时候也比较慢,每张图片的每个region proposal都要做卷积,重复操作太多。

虽然在Fast RCNN之前有提出过SPPnet算法来解决RCNN中重复卷积的问题,但是SPPnet依然存在和RCNN一样的一些缺点比如:训练步骤过多,需要训练SVM分类器,需要额外的回归器,特征也是保存在磁盘上。因此Fast RCNN相当于全面改进了原有的这两个算法,不仅训练步骤减少了,也不需要额外将特征保存在磁盘上。

基于VGG16的Fast RCNN算法在训练速度上比RCNN快了将近9倍,比SPPnet快大概3倍;测试速度比RCNN快了213倍,比SPPnet快了10倍。在VOC2012上的mAP在66%左右。

一 Fast R-CNN思想

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢 

RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢 

原因同上。 
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大 

RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

二 算法简述

算法的主网络是VGG16

技术图片

以下是训练的步骤: 

  • 输入是224*224,经过5个卷积层和2个降采样层(这两个降采样层分别跟在第一和第二个卷积层后面)
  • 进入RoI Pooling层,该层的输入是conv5层的输出和P个候选区域region proposal。
  • 然后再经过两个都是output是4096的全连接层。
  • 最后分别经过output个数是21和84的两个全连接层(这两个全连接层是并列的,不是前后关系),前者是分类的输出,代表每个region proposal属于每个类别(21类)的得分,后者是回归的输出,代表每个region proposal的四个坐标。
  • 最后是两个损失层,分类的是softmaxWithLoss,输入是label和分类层输出的得分;回归的是SmoothL1Loss,输入是回归层的输出和target坐标及weight。

测试的过程: 
与训练基本相同,最后两个loss层要改成一个softmax层,输入是分类的score,输出概率。最后对每个类别采用NMS(non-maximun suppression)。

三 算法详解

Fast R-CNN的流程图如下,这个网络的输入是原始图片和候选区域,输出是分类类别和bbox回归值。对于原始图片中的候选框区域,和SPPNet中做法一样,都是将它映射到卷积特征的对应区域(即图中的RoI projection),然后输入到RoI pooling layer,可以得到一个固定大小的特征图。将这个特征图经过2个全连接层以后得到RoI的特征,然后将特征经过全连接层,使用softmax得到分类,使用回归得到边框回归。CNN的主体结构可以来自于AlexNet,也可以来自于VGGNet。

技术图片

1、ROI池化层

这里唯一需要解释的就是RoI pooling layer。如果特征图(feature map)上的RoI 大小是h?w(这里忽略了通道数),将这个特征图划分为h/H?w/W个网格,每个网格大小为H*W,对每个网格做max pooling,这样得到pooling以后的大小就是H?W(在文章中,VGG16网络使用H=W=7的参数,上图中绘制的是6x6的)。无论原始的RoI多大,最后都转化为7*7大小的特征图。本文将RoI池化为7*7的输出,其实这一层就是SPP的特例,SPP金字塔只有一层就是这样的。

因此可以看出Fast RCNN主要有3个改进:

  • 卷积不再是对每个region proposal进行,而是直接对整张图像,这样减少了很多重复计算。
  • 原来RCNN是对每个region proposal分别做卷积,因为一张图像中有2000左右的region proposal,肯定相互之间的重叠率很高,因此产生重复计算。用ROI pooling进行特征的尺寸变换,因为全连接层的输入要求尺寸大小一样,因此不能直接把region proposal作为输入。
  • 将regressor放进网络一起训练,每个类别对应一个regressor,同时用softmax代替原来的SVM分类器。

2、训练

网络的训练需要从下面几个方向考虑:1、训练样本是什么;2、损失函数是什么;3、如果提出了新的网络结构,网络结构的反向传播怎么做。此外,还可以关注一下超参数的选取方法,看看作者在超参数选取上有什么好的思路可以借鉴。

3、训练样本

从网络的前向传播可以看到,网络需要的输入是图片和region proposal,输出是类别和bbox,那么训练的图片每个候选区需要提前标注好类别和bbox。

作者使用层次抽样来选取训练图片。对应每个mini-batch而言,大小为128个region proposal(或者叫RoI)。先从训练图片中选取2张图片,每个图片的RoI中选取64个RoI,形成这128个RoI。这样网络前面的卷积计算是可以共享的,降低了训练的复杂度。64个RoI中,25%是有类别的(IoU>0.5u1),剩下75%是背景(IoU[0.1,0.5),u=0)。数据增强使用了水平翻转。测试的时候则每张图像大约2000个RoI。

4、损失函数

技术图片

将分类的loss和回归的loss整合在一起,其中分类采用log loss,即对真实分类(下图中的pu)的概率取负log,而回归的loss和R-CNN基本一样。分类层输出K+1维,表示K个类和1个背景类。

技术图片

这是回归的loss,其中tu表示预测的结果,u表示类别。v表示真实的结果,即bounding box regression target。

技术图片

 

参考文章

[1]目标检测:Fast R-CNN

[2]Fast RCNN算法详解

[3]Fast RCNN算法详解

[4]目标检测:SPP-net

[5]Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

[6]基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN(强烈推荐)

[7]目标检测(3)-SPPNet

[8]目标检测(4)-Fast R-CNN

以上是关于Fast算法原理:fastica算法步骤详解的主要内容,如果未能解决你的问题,请参考以下文章

6. 目标检测算法之Fast R-CNN算法详解

Isolation Forest算法实现详解

第二十九节,目标检测算法之Fast R-CNN算法详解

目标检测算法之Fast R-CNN算法详解

RRT与RRT*算法具体步骤与程序详解(python)

独立成分分析 ICA 原理及公式推导 示例