Lintcode077.Longest Common Subsequence
Posted Vincent丶
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Lintcode077.Longest Common Subsequence相关的知识,希望对你有一定的参考价值。
题目:
Given a sequence of integers, find the longest increasing subsequence (LIS).
You code should return the length of the LIS.
What‘s the definition of longest increasing subsequence?
-
The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence‘s elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.
-
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
For [5, 4, 1, 2, 3]
, the LIS is [1, 2, 3]
, return 3
For [4, 2, 4, 5, 3, 7]
, the LIS is [2, 4, 5, 7]
, return 4
题解:
For dp[i], dp[i] is max(dp[j]+1, dp[i]), for all j < i and nums[j] < nums[i].
Solution 1 ()
class Solution { public: int longestIncreasingSubsequence(vector<int> nums) { if (nums.empty()) { return 0; } vector<int> dp(nums.size(), 1); int res = 1; for (int i = 1; i < nums.size(); ++i) { for (int j = 0; j < i; ++j) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1); } } res = max(dp[i], res); } return res; } };
Solution 2 ()
class Solution { public: /** * @param nums: The integer array * @return: The length of LIS (longest increasing subsequence) */ int longestIncreasingSubsequence(vector<int> nums) { vector<int> res; for(int i=0; i<nums.size(); i++) { auto it = std::lower_bound(res.begin(), res.end(), nums[i]); if(it==res.end()) res.push_back(nums[i]); else *it = nums[i]; } return res.size(); } };
Solution 3 ()
class Solution { public: int longestIncreasingSubsequence(vector<int> nums) { if (nums.empty()) { return 0; } vector<int> tmp; tmp.push_back(nums[0]); for (auto num : nums) { if (num < tmp[0]) { tmp[0] = num; } else if (num > tmp.back()) { tmp.push_back(num); } else { int begin = 0, end = tmp.size(); while (begin < end) { int mid = begin + (end - begin) / 2; if (tmp[mid] < num) { begin = mid + 1; } else { end = mid; } } tmp[end] = num; } } return tmp.size(); } };
以上是关于Lintcode077.Longest Common Subsequence的主要内容,如果未能解决你的问题,请参考以下文章
java Examples-src-Main-Utilities-commonutilitiesclass.java