最大N,Insertion sort被卡
Posted 浪漫逆风
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最大N,Insertion sort被卡相关的知识,希望对你有一定的参考价值。
本博客的代码的思想和图片参考:好大学慕课浙江大学陈越老师、何钦铭老师的《数据结构》
陈越姥姥和小伙伴们大家好。我在编写 Insert or Merge 和Insertion or Heap Sort 被测试点5:最大N,Ins卡住。难受死宝宝了。
下面是具体的图片和代码
Insert or Merge卡住:
Insertion or Heap Sort 卡住:
下面是具体的代码:
1 /* 2 * mergeOrInsert.c 3 * 4 * Created on: 2017年5月19日 5 * Author: ygh 6 */ 7 #include <stdio.h> 8 #include <stdlib.h> 9 #define MAX_LENGTH 100 10 #define MAX_VALUE 65535 11 typedef int elementType; 12 13 /* 14 *Get the input data from the command line 15 *@param source A <code>elementType</code> array to store the original data 16 *@param partical A <code>elementType</code> array to store elements which has been sorted partial 17 *@param n The length of the array 18 */ 19 void getInputData(elementType source[], elementType partial[], int n) { 20 int i; 21 elementType x; 22 for (i = 0; i < n; i++) { 23 scanf("%d", &x); 24 source[i] = x; 25 } 26 27 for (i = 0; i < n; i++) { 28 scanf("%d", &x); 29 partial[i] = x; 30 } 31 } 32 33 /* 34 * Print the array to console 35 * @param a A integer array need to sort 36 * @param n The length of the array 37 */ 38 void printArray(elementType a[], int n) { 39 int i; 40 for (i = 0; i < n; i++) { 41 if (i == n - 1) { 42 printf("%d", a[i]); 43 } else { 44 printf("%d ", a[i]); 45 } 46 } 47 printf("\\n"); 48 } 49 50 /* 51 * Judge which sorting method the system has used.If it is the insertion merge,return the index 52 * of the next insert point.Otherwise return zero 53 * @param source A <code>elementType</code> array to store the original data 54 * @param partical A <code>elementType</code> array to store elements which has been sorted partial 55 * @param n The length of the array 56 */ 57 int judgeMergeOrInsertion(elementType source[], elementType partial[], int n) { 58 int i; 59 int min = partial[0]; 60 int insertPoint; 61 for (i = 1; i < n; i++) { 62 insertPoint = i; 63 if (partial[i] > min) { 64 min = partial[i]; 65 } else { 66 break; 67 } 68 } 69 for (; i < n; i++) { 70 if (partial[i] != source[i]) { 71 return 0; 72 } 73 } 74 return insertPoint; 75 } 76 77 /* 78 * Execute one time insertion sort from insertPoint 79 * @param partial A <code>elementType</code> array to store elements which has been sorted partial 80 * @param inserPoint The index of next point 81 */ 82 void insertion_sort_pass(elementType partial[], int inserPoint) { 83 int i; 84 int x = partial[inserPoint]; 85 for (i = inserPoint; i > 0; i--) { 86 if (x < partial[i - 1]) { 87 partial[i] = partial[i - 1]; 88 } else { 89 break; 90 } 91 } 92 partial[i] = x; 93 } 94 95 /* 96 * Find the length of merge sort sub-sequence. 97 * Algorithms thoughts: 98 * we know the sequence length is 2 4 8 16,so we can let length from 2 4 8 ... n 99 * 1.We judge the length whether more than 2, we check the number whether ordered between two sub-sequence. If all two sub-sequence is ordered,we will check the length whether more than four. Otherwise the length is equal two and return it. 100 * 2.we let length increase no more than n ,we can get length and return it. 101 * 102 * @param partial A <code>elementType</code> array to store elements which has been sorted partial 103 * @param n The length of the array 104 * @return The length of the sub-sequence 105 */ 106 int findMergeSubSequenceLength(int partial[], int n) { 107 int length, i; 108 for (length = 2; length <= n; length *= 2) { 109 for (i = 1; i < n / length; i += 2) { 110 if (partial[i * length - 1] > partial[i * length]) { 111 return length; 112 } 113 } 114 } 115 return n; 116 } 117 118 /* 119 * Merge sub-sequence to original array. 120 * @param a original <code>elementType</code> array to store the elements 121 * @param tmpA temporary <code>elementType</code> array to store the temporary elements 122 * @param l The start index of left sub-sequence 123 * @param r The start index of left sub-sequence 124 * @param rightEnd The end index of left sub-sequence 125 */ 126 void merge(elementType a[], elementType tmpA[], int l, int r, int rightEnd) { 127 /* 128 * lefeEnd is the r-1,the sub-sequence is adjacent 129 */ 130 int leftEnd = r - 1; 131 /* 132 * tmp is the counter of the <code>tmpA</code> 133 * we should let <code>tmpA</code> index corresponding original array 134 */ 135 int tmp = l; 136 /* 137 * Record the quantity of the all elements 138 */ 139 int numElements = rightEnd - l + 1; 140 int i; 141 while (l <= leftEnd && r <= rightEnd) { 142 if (a[l] <= a[r]) { 143 tmpA[tmp++] = a[l++]; 144 } else { 145 tmpA[tmp++] = a[r++]; 146 } 147 } 148 while (l <= leftEnd) { 149 tmpA[tmp++] = a[l++]; 150 } 151 while (r <= rightEnd) { 152 tmpA[tmp++] = a[r++]; 153 } 154 155 /* 156 * Put <code>tmpA</code> elements into the original array 157 */ 158 for (i = 0; i < numElements; i++, rightEnd--) { 159 a[rightEnd] = tmpA[rightEnd]; 160 } 161 } 162 163 /* 164 *merge ordered sub-sequence 165 * @param a original <code>elementType</code> array to store the elements 166 * @param tmpA temporary <code>elementType</code> array to store the temporary elements 167 * @param n The length of the a 168 * @param the ordered current sub-sequence length 169 */ 170 void mergerPass(elementType a[], elementType tmpA[], int n, int lenth) { 171 int i, j; 172 /* 173 * The loop will stop when meet the last two ordered sub-sequence 174 * The rest may be two sub-sequence of one sub-sequence 175 */ 176 for (i = 0; i <= n - 2 * lenth; i += lenth * 2) { 177 merge(a, tmpA, i, i + lenth, i + 2 * lenth - 1); 178 } 179 /* 180 *If the rest of is two sub-sequence 181 */ 182 if (i + lenth < n) { 183 merge(a, tmpA, i, i + lenth, n - 1); 184 } else { 185 for (j = i; j < n; j++) 186 tmpA[j] = a[j]; 187 } 188 } 189 190 int main() { 191 elementType source[MAX_LENGTH]; 192 elementType partial[MAX_LENGTH]; 193 int n; 194 int length = 0; 195 elementType *tmpA; 196 scanf("%d", &n); 197 getInputData(source, partial, n); 198 int inserPoint = judgeMergeOrInsertion(source, partial, n); 199 if (inserPoint != 0) { 200 if (inserPoint < n) { 201 insertion_sort_pass(partial, inserPoint); 202 } 203 printf("Insertion Sort\\n"); 204 } else { 205 tmpA = malloc(n * sizeof(elementType)); 206 length = findMergeSubSequenceLength(partial, n); 207 mergerPass(partial, tmpA, n, length); 208 printf("Merge Sort\\n"); 209 } 210 printArray(partial, n); 211 return 0; 212 }
1 /* 2 * InsertionOrHeap.c 3 * 4 * Created on: 2017年5月20日 5 * Author: ygh 6 */ 7 #include <stdio.h> 8 #include <stdlib.h> 9 #define MAX_LENGTH 100 10 #define MAX_VALUE 65535 11 typedef int elementType; 12 13 /* 14 *Get the input data from the command line 15 *@param source A <code>elementType</code> array to store the original data 16 *@param partical A <code>elementType</code> array to store elements which has been sorted partial 17 *@param n The length of the array 18 */ 19 void getInputData(elementType source[], elementType partial[], int n) { 20 int i; 21 elementType x; 22 for (i = 0; i < n; i++) { 23 scanf("%d", &x); 24 source[i] = x; 25 } 26 27 for (i = 0; i < n; i++) { 28 scanf("%d", &x); 29 partial[i] = x; 30 } 31 } 32 33 /* 34 * Print the array to console 35 * @param a A integer array need to sort 36 * @param n The length of the array 37 */ 38 void printArray(elementType a[], int n) { 39 int i; 40 for (i = 0; i < n; i++) { 41 if (i == n - 1) { 42 printf("%d", a[i]); 43 } else { 44 printf("%d ", a[i]); 45 } 46 } 47 printf("\\n"); 48 } 49 50 /* 51 * Judge which sorting method the system has used.If it is the insertion merge,return the index 52 * of the next insert point.Otherwise return zero 53 * @param source A <code>elementType</code> array to store the original data 54 * @param partical A <code>elementType</code> array to store elements which has been sorted partial 55 * @param n The length of the array 56 */ 57 int judgeMergeOrInsertion(elementType source[], elementType partial[], int n) { 58 int i; 59 int min = partial[0]; 60 int insertPoint; 61 for (i = 1; i < n; i++) { 62 insertPoint = i; 63 if (partial[i] > min) { 64 min = partial[i]; 65 } else { 66 break; 67 } 68 } 69 for (; i < n; i++) { 70 if (partial[i] != source[i]) { 71 return 0; 72 } 73 } 74 return insertPoint; 75 } 76 77 /* 78 * Execute one time insertion sort from insertPoint 79 * @param partial A <code>elementType</code> array to store elements which has been sorted partial 80 * @param inserPoint The index of next point 81 */ 82 void insertion_sort_pass(elementType partial[], int inserPoint) { 83 int i; 84 int x = partial[inserPoint]; 85 for (i = inserPoint; i > 0; i--) { 86 if (x < partial[i - 1]) { 87 partial[i] = partial[i - 1]; 88 } else { 89 break; 90 } 91 } 92 partial[i] = x; 93 } 94 95 /* 96 * Swap two integer number 97 */ 98 void swap(int *a, int *b) { 99 int temp = *a; 100 *a = *b; 101 *b = temp; 102 } 103 104 /* 105 * We know,in the heap sort,we get the maximal value from heap,the heap size will 106 * decrease each time,So the last elements is the bigger and ordered. 107 * We can according to this to find the size of the current heap. 108 * @param partial A <code>elementType</code> array to store elements which has been sorted partial 109 * @param inserPoint The index of next point 110 */ 111 int getSizeOfHeap(int partial[], int n) { 112 int max = partial[0]; 113 int i; 114 for (i = n - 1; i >= 0; i--) { 115 if (partial[i] < max) { 116 return i; 117 } 118 } 119 return 0; 120 } 121 122 /* 123 * Update the element of tree make the tree to be a maximal heap 124 * @param partial A <code>elementType</code> array to store the elements 125 * @param p The index of the element need to update 126 * @param n The length of the array 127 */ 128 void percDowm(elementType partial[], int p, int n) { 129 int parent, child = 0; 130 elementType x = partial[p]; 131 for (parent = p; (parent * 2 + 1) < n; parent = child) { 132 child = parent * 2 + 1; 133 if ((child != n - 1) && (partial[child] < partial[child + 1])) { 134 child++; 135 } 136 if (x >= partial[child]) { 137 break; 138 } else { 139 partial[parent] = partial[child]; 140 } 141 } 142 partial[parent] = x; 143 } 144 145 /* 146 * Execute heap sort one time 147 * @param partial A <code>elementType</code> array to store elements 148 * which has been sorted partial 149 * @param size The size of the current heap 150 */ 151 void heapSortPass(int partial[], int size) { 152 swap(&partial[0], &partial[size]); 153 percDowm(partial, 0, size); 154 } 155 156 int main() { 157 elementType source[MAX_LENGTH]; 158 elementType partial[MAX_LENGTH]; 159 int n; 160 int size = 0; 161 scanf("%d", &n); 162 getInputData(source, partial, n); 163 int inserPoint = judgeMergeOrInsertion(source, partial, n); 164 if (inserPoint != 0) { 165 if (inserPoint < n) { 166 insertion_sort_pass(partial, inserPoint); 167 } 168 printf("Insertion Sort\\n"); 169 } else { 170 printf("Heap Sort\\n"); 171 size = getSizeOfHeap(partial, n); 172 heapSortPass(partial, size); 173 } 174 printArray(partial, n); 175 return 0; 176 }
以上是关于最大N,Insertion sort被卡的主要内容,如果未能解决你的问题,请参考以下文章
PAT甲题题解1098. Insertion or Heap Sort (25)-(插入排序和堆排序)
Insertion Sort Gym - 101955C 思路+推公式