Kaldi + CNN for Speech Enhancement
Posted ATM
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kaldi + CNN for Speech Enhancement相关的知识,希望对你有一定的参考价值。
(一)网络结构
input-> C1 –>softmax –>S2 –> C3 –>softmax –>S4 –>FC5 –> softmax –> FC6
(二)数据预处理
1.归一化:提取音频.wav的对数频谱值作为特征值(d=129),并归一化之;
2.扩帧:对每一帧左右各扩5帧,扩帧后的维度 D =d*(5*2+1) =d*11;
(三)初始化各网络层
1. conv1
① in_dim = D
② stride1 = d
③ num_patch1 = 1+(stride1 - patch1_dim)/patch1_step
④ out_dim = num_filters1 *num_patch1
2. mpool1
① in_dim = out_dim (1.④)
② num_pool1 = num_patch1 / pool1_size
③ out_dim = num_filters1 *num_pool1
3.conv2
① in_dim = out_dim (2.③)
② stride2 = num_filters1 *num_pool1
③ patch2_dim = patch2_dim *num_filters1
④ patch2_step = num_filters1
⑤ num_patch2 = 1+(stride2 – patch2_dim)/patch2_step
⑥ out_dim = num_filters2 *num_patch2
4.mpool2
① in_dim = out_dim (3.⑥)
② num_pool2 = num_patch2 / pool2_size
③ out_dim = num_filters2 *num_pool2
5.FC1 & FC2
in_dim = out_dim = d
以上是关于Kaldi + CNN for Speech Enhancement的主要内容,如果未能解决你的问题,请参考以下文章
文献学习Conformer: Convolution-augmented Transformer for Speech Recognition