POJ No 2139 Six Degress of Cowvin Bacon(warshall_floyd(任意两点最短路径))
Posted 豆子
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ No 2139 Six Degress of Cowvin Bacon(warshall_floyd(任意两点最短路径))相关的知识,希望对你有一定的参考价值。
题目: http://poj.org/problem?id=2139
题解:N只牛,在一组的两只牛,分别两只之间为 “1度”,自己到自己为0度,M组牛。求,N只牛之中,两只牛之间 平均最短度数*100。模板Floyd算法,求任意两点之间最短路径。
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
const int maxn = 300 + 24;
const int INF = 99999999;
int N, M; // N个牛 ,M组电影
//不存在的时候等于无穷大 或者
//d[i][i] = 0
int d[maxn][maxn]; //d[u][v]表示边e=(u,v)的权值
int x[maxn];
void warshall_floyd();
void init();
void init()
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i == j) {
d[i][j] = 0;
} else {
d[i][j] = INF;
}
}
}
}
void warshall_floyd()
{
//经过顶点和不经过顶点的情况
for (int k = 0; k < N; k++) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
}
void solve()
{
int n;
scanf("%d%d", &N, &M);
init();
while (M--)
{
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &x[i]);
--x[i];
}
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++) {
d[x[i]][x[j]] = d[x[j]][x[i]] = 1;
}
}
}
warshall_floyd();
int ans = INF;
for (int i = 0; i < N; i++)
{
int sum = 0;
for (int j = 0; j < N; j++) {
sum += d[i][j];
}
ans = min(ans, sum);
}
printf("%d\n", 100 * ans / (N - 1));
}
int main()
{
solve();
return 0;
}
以上是关于POJ No 2139 Six Degress of Cowvin Bacon(warshall_floyd(任意两点最短路径))的主要内容,如果未能解决你的问题,请参考以下文章
POJ2139 Six Degrees of Cowvin Bacon [Floyd]
POJ2139-Six Degrees of Cowvin Bacon-(Floyd_Warshall)
任意两点间最短距离floyd-warshall ---- POJ 2139 Six Degrees of Cowvin Bacon