300. Longest Increasing Subsequence

Posted 蓝色地中海

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了300. Longest Increasing Subsequence相关的知识,希望对你有一定的参考价值。

Problem statement:

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

Solution:

This is one sequence DP problem. The dp array is one dimension. dp[i] means first i chars in the given string. The return value is not dp[n], it is one max value among dp[0 ... n - 1].

dp[i] = max(dp[i], dp[j] + 1) if nums[i] == nums[j], meanwhile, update the max LIS.

Time complexity is O(n * n).

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int max_lis = 0;
        int size = nums.size();
        vector<int> lis(size, 1);
        for(int i = 0; i < size; i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]){
                    lis[i] = max(lis[i], lis[j] + 1);
                }
            }
            max_lis = max(max_lis, lis[i]);
        }
        return max_lis;
    }
};

以上是关于300. Longest Increasing Subsequence的主要内容,如果未能解决你的问题,请参考以下文章

300. Longest Increasing Subsequence

300. Longest Increasing Subsequence

300. Longest Increasing Subsequence

300. Longest Increasing Subsequence

300. Longest Increasing Subsequence

300. Longest Increasing Subsequence