曼-惠特尼U检验Mann–Whitney Test
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了曼-惠特尼U检验Mann–Whitney Test相关的知识,希望对你有一定的参考价值。
医药统计项目联系QQ:231469242
曼-惠特尼U检验
http://baike.baidu.com/link?url=4h87rAmi82XhlH_tHfC8JV3UET7azg-E5hK0DuRvpyypKwHlSJOW8S9Bry8zEvCgcVu9azp5FV17XiZvK4LDcctA42IkhINByLZvmTw-iU4MxsGD1330Sk1QoPeGHNMdQozFGUbs9PHQ9v5P5spoq_
- 中文名
- 曼-惠特尼U检验
- 外文名
- Mann-Whitney U test
- 提出时间
- 1947年
- 又 称
- 曼-惠特尼秩和检验
- 术语来源
- 统计学
定义
编辑步骤
编辑
1
|
U1 = R1 - n1*(n1+1)/ 2 |
1
|
U2 = R2 - n2*(n2+1)/ 2 |
1
|
U1 + U2 = R1 + R2 - (n1 * (n1 + 1) + n2 * n2(n2 + 1))/ 2 |
1
|
U1 + U2 = n1 * n2 |
应用举例
编辑
预压浸出组
|
等级排序
|
螺旋热榨组
|
等级排序
|
39.33
|
3
|
42.91
|
5
|
44.10
|
8
|
44.69
|
10
|
35.89
|
1
|
44.54
|
9
|
43.35
|
6
|
45.31
|
11
|
47.61
|
13
|
37.73
|
2
|
43.71
|
7
|
48.75
|
14
|
46.71
|
12
|
||
41.85
|
4
|
附表
编辑
n2
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
n1
|
|||||||||||||||
1
|
|||||||||||||||
2
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
|||||||
3
|
0
|
1
|
1
|
2
|
2
|
3
|
3
|
4
|
4
|
5
|
5
|
||||
4
|
0
|
1
|
2
|
3
|
4
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
|||
5
|
0
|
1
|
2
|
3
|
5
|
6
|
7
|
8
|
9
|
11
|
12
|
13
|
14
|
||
6
|
1
|
2
|
3
|
5
|
6
|
8
|
10
|
11
|
13
|
14
|
16
|
17
|
19
|
||
7
|
1
|
3
|
5
|
6
|
8
|
10
|
12
|
14
|
16
|
18
|
20
|
22
|
24
|
||
8
|
0
|
2
|
4
|
6
|
8
|
10
|
13
|
15
|
17
|
19
|
22
|
24
|
26
|
29
|
|
9
|
0
|
2
|
4
|
7
|
10
|
12
|
15
|
17
|
20
|
23
|
26
|
28
|
31
|
34
|
|
10
|
0
|
3
|
5
|
8
|
11
|
14
|
17
|
20
|
23
|
26
|
29
|
33
|
36
|
39
|
|
11
|
0
|
3
|
6
|
9
|
13
|
16
|
19
|
23
|
26
|
30
|
33
|
37
|
40
|
44
|
|
12
|
1
|
4
|
7
|
11
|
14
|
18
|
22
|
26
|
29
|
33
|
37
|
41
|
45
|
49
|
|
13
|
1
|
4
|
8
|
12
|
16
|
20
|
24
|
28
|
33
|
37
|
41
|
45
|
50
|
54
|
|
14
|
1
|
5
|
9
|
13
|
17
|
22
|
26
|
31
|
36
|
40
|
45
|
50
|
55
|
59
|
|
15
|
1
|
5
|
10
|
14
|
19
|
24
|
29
|
34
|
39
|
44
|
49
|
54
|
59
|
Nonparametric Comparison of Two Groups:
Mann–Whitney Test
If the measurement values from two groups are not normally distributed we have
to resort to a nonparametric test. The most common nonparametric test for the
comparison of two independent groups is the Mann–Whitney(–Wilcoxon) test.
Watch out, because this test is sometimes also referred to as Wilcoxon rank-sum
test. This is different from the Wilcoxon signed rank sum test! The test-statistic for
this test is commonly indicated with u:
u_statistic, pVal = stats.mannwhitneyu(group1, group2)
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/twoGroups.
Code: “ISP_twoGroups.py”3: Comparison of two groups, paired and unpaired.
以上是关于曼-惠特尼U检验Mann–Whitney Test的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用wilcox.test函数进行两组数据的Wilcoxon秩和检验(Mann–Whitney U检验)评估两组数据是否来自相同的概率分布