221. Maximal Square
Posted 蓝色地中海
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了221. Maximal Square相关的知识,希望对你有一定的参考价值。
Problem statement:
Given a 2D binary matrix filled with 0\'s and 1\'s, find the largest square containing only 1\'s and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
Return 4.
Solution:
It looks like 85. Maximal Rectangle. But, there is big difference. This is DP problem, however, maximul rectangle needs tricky.
The key point is what we want from DP? The answer is max side length of square.
DP maintains a 2D array, dp[i][j] means the max side of length of square by current position.
Initialization:
dp[0][j] = matrix[0][j] - \'0\'; dp[i][0] = matrix[i][0] - \'0\';
DP formula. and update the max side length for each value.
if(matrix[i][j] == \'1\'){ dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1; }
Return max_size * max_size;
The time complexity is O(n * n)
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { if(matrix.empty()){ return 0; } int row = matrix.size(); int col = matrix[0].size(); vector<vector<int>> square_size(row, vector<int>(col, 0)); int max_size = 0; for(int i = 0; i < row; i++){ square_size[i][0] = matrix[i][0] - \'0\'; max_size = max(max_size, square_size[i][0]); } for(int j = 0; j < col; j++){ square_size[0][j] = matrix[0][j] - \'0\'; max_size = max(max_size, square_size[0][j]); } for(int i = 1; i < row; i++){ for(int j = 1; j < col; j++){ if(matrix[i][j] == \'1\'){ square_size[i][j] = min(square_size[i - 1][j - 1], min(square_size[i - 1][j], square_size[i][j - 1])) + 1; } max_size = max(max_size, square_size[i][j]); } } return max_size * max_size; } };
以上是关于221. Maximal Square的主要内容,如果未能解决你的问题,请参考以下文章