ArrayList源码及解析
Posted Confesser
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ArrayList源码及解析相关的知识,希望对你有一定的参考价值。
package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; //默认容量 private static final int DEFAULT_CAPACITY = 10; //静态的一个属性,所有实例共享属性,当初始化容量为0的时候,就使用这个属性作为实例底层数组 private static final Object[] EMPTY_ELEMENTDATA = {}; /*根据注释,这个大概意思就是构造一个空的对象数组,用来与EMPTY_ELEMENTDATA 这个数组进行对比 来确定当第一次向ArrayList中添加数据时,应该如果进行扩容,就是增加多大的容量。*/ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; //实际上真正保存数据的数组,从此出可以看出ArrayList使用Object数组来保存数据 transient Object[] elementData; // non-private to simplify nested class access //实际包含元素的个数 private int size; /* 传递一个初始化容量的构造函数,会判断传递的参数与0的关系 如果大于0,会在ArrayList内部构建一个长度为initalCapacity的数组 如果等于0,会将上述的静态EMPTY_ELEMENTDATA属性赋值给elementData,也不会产生新的数组。如果小于0,则抛出异常 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity];//注意此处并没有将initialCapacity赋值给size } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /* 无参的构造函数,在该构造函数中,会将上述的静态的DEFAULTCAPACITY_EMPTY_ELEMENTDATA属性,赋值给elementData属性 也即我们用这种方法构造ArraList的时候,并不会真正产生实例化的数组,而是引用一个静态的空数组 */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /* 传递一个集合给ArrayList,它首先会将集合转换成数组赋值给elementData 之后判断数组长度,如果等于0,则将elementData赋值为EMPTY_ELEMENTDATA 如果不等于0,还需要判断接受过来的数组(现在是elementData)是否是Object[]类型的 如果不是的化,将它转换成Object[]类型(根据注释,toArray方法有可能得到的不是Object[]类型) */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } /* 本质上是将数组的尾部删除掉形成新数组 新数组的length与size一致,节约空间 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /* 增加这个ArrayList实例的能力,如果有必要,以确保它至少能容纳的最小容量参数指定元素个数。 提供给外界的方法,是的使用者可以通过这个方法自己去扩容 */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It‘s already // supposed to be at default size. : DEFAULT_CAPACITY;//elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA意味着elementData可能不是一个length为0的数组 if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } /* 一个私有方法,确保minCapacity在容量范围内 如果elementData等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则minCapacity会取DEFAULT_CAPACITY, minCapacity中比较大的那个 也即如果minCapacity小于10,则取10,如果大于10,则去minCapacity 随后要执行ensureExplicitCapacity方法 */ private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } /* ensureExplicitCapacity要接受一个int类型的参数,意味着最少需要容量为minCapacity 首先会对modCount+1,modCount是AbstractList类中的一个成员变量,该值表示对List的修改次数,主要是为了服务快速失败功能的 随后如果minCapacity要大于现有数组elementData的长度的化,那么就执行grow方法,grow是扩容的方法 */ private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /* 数组所能开辟的最大长度 因为有些虚拟机保留了一些header words在数组中 尝试要开辟更大的长度的数组,可能会出现OOM异常(在一些虚拟机实现中) */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /* ArrayList的扩容,接收一个int类型参数,表示至少需要多少容量 */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length;//得到目前的容量 //oldCapacity>>1表示除2取整数,该式子最终表示意思为newCapacity大于为oldCapacity的1.5倍数 int newCapacity = oldCapacity + (oldCapacity >> 1); //判断newCapacity是否溢出 if (newCapacity - minCapacity < 0) //溢出:newCapacity等于minCapacity newCapacity = minCapacity; //判断newCapacity是否超过了MAX_ARRAY_SIZE,超过了,则计算最大容量;具体原因是因为不同虚拟机的实现不同 if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); //执行Arrays.copyOf方法,传递原数组与新数组长度,由Arrays内部创建数组返回并接受给elementData elementData = Arrays.copyOf(elementData, newCapacity); } /* 求出最大的容量值,首先判断minCapacity是否已经溢出了,溢出了就直接抛出OOM 否则就去判断minCapacity 是否大于 MAX_ARRAY_SIZE 大于返回 Integer.MAX_VALUE ,不大于 返回MAX_ARRAY_SIZE */ private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } //得到size,size是真正的保存的元素的数量 public int size() { return size; } //判断容器是否为空(指是不包含元素) public boolean isEmpty() { return size == 0; } //判断容器是否包含某个元素 public boolean contains(Object o) { return indexOf(o) >= 0; } //indexOf是来获得o元素(包括null)在容器中的位置的,位置从0开始到size-1结束,如果返回-1表示不包含 //对于重复的元素,只获取第一个所在的位置 public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } //与indexOf功能一样,但是确实获得重复元素的最后一个位置 public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } //重写了Object中的clone方法,用于赋值容器,浅复制 public Object clone() { try { ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) {//看来大神也感觉异常不好处理了...不可能发生异常的地方,却还是要处理... // this shouldn‘t happen, since we are Cloneable throw new InternalError(e); } } //得到数组的副本 public Object[] toArray() { return Arrays.copyOf(elementData, size); } /* 给定一个指定数组,返回指定数组大小,类型的副本 */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a‘s runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size);//此处是size == a.length if (a.length > size) a[size] = null;//如果a.length>size,则截取size的长度,但是如果a本身就是有数据的,可能会出现a[size+?]有数据,而a[size]为null return a; } // Positional Access Operations //不需要检查index的快速访问元素,但是是包权限,只允许内部使用 @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /* 判断一下是否index是否越界 然后通过快速访问来返回元素 */ public E get(int index) { rangeCheck(index); return elementData(index); } /* 判断一下是否越界 然后得到处于index位置的原元素,随后将index位置置入新元素 返回原来的元素 要求 index<size */ public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /* 集合中新增一个元素,首先要确保在承受能力范围内 之后将新加入进来的元素赋值到数组的第size的位置上 随后size+1 新增的元素,插入到数组的末尾 */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /* 插入一个元素element到指定index位置,原位置的元素依次向后移动一位 改方法效率要低一些,如果并不是特定必须要塞入哪个位置的话,最好不要用 */ public void add(int index, E element) { //首先会去检查一下index是否可以使用 rangeCheckForAdd(index); //确保数组可容纳 ensureCapacityInternal(size + 1); // Increments modCount!! 会修改modCount的值,modCount+1 //随后调用System.arraycopy方法,将elementData的index位置元素依次向后移动,为接下来的插入预留空间 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element;//真正的插入操作 size++;//size+1 } /* 删除指定位置的元素,如果index>size的话,会出现数组越界 */ public E remove(int index) { rangeCheck(index);//index>size throw IndexOutOfBoundsException modCount++; E oldValue = elementData(index);//得到原来elementData中的元素 int numMoved = size - index - 1;//计算删除之后需要移动元素的数量 if (numMoved > 0)//移动元素 System.arraycopy(elementData, index+1, elementData, index, numMoved);//移动的时候,就会覆盖原来的元素 //清除最后一个元素的引用,因为原来的元素以及被删除了 elementData[--size] = null; // clear to let GC do its work return oldValue;//返回被删除的元素 } /* 删除某一个元素,传入要被删除的元素 */ public boolean remove(Object o) { if (o == null) {//删除null元素 for (int index = 0; index < size; index++)//迭代ArrayList if (elementData[index] == null) {//如果在size之前的位置有存在空元素 fastRemove(index);//则快速删除(所谓快速删除,就是不去做越界检查以及不返回结果,完全给本类自己使用的private方法) return true; } } else {//删除非空元素,与删除null元素逻辑相同 for (int index = 0; index < size; index++) if (o.equals(elementData[index])) {//此处使用equals方法来进行比较,所以在使用remove(Object o)的时候,要考虑是否重写了equals方法 fastRemove(index);//fastRemove也是会移动数组的,如果有删除重复元素的时候,效率很低 return true; } } return false; } /* 快速删除 不做index检查,只允许内部使用 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /* 清除数组,所有元素置为null */ public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /* 添加一次性add多个元素,接受参数为集合类型 */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length;//可能会产生空指针错误 ensureCapacityInternal(size + numNew); // Increments modCount //将a数组插入到elementData的size位置 System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /* 指定index位置插入多个元素,原来位置的元素依次向后移动 index不能大于size,如果大于size会产生数组越界 */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length;//可能会产生空指针错误 ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /* 范围删除,删除从fromIndex~toIndex,包含fromIndex,不包含toIndex */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } //index检查判断,专门封装起来是因为很多地方使用 private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //专门为add方法封装的rangeCheck方法 private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //为IndexOutOfBoundsException提供信息的方法,告诉哪个位置出现了数组越界 private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } //一次性删除多个元素 public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c);//判断c是否为空,为空抛出异常 return batchRemove(c, false);//批量删除 } //保留当前容器与c的并集,并返回 public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); } //批量删除方法,complement为true表示求交集,如果为false表示在elementData中保留原有的非c的集合 //也即true: a属于elementData同时a属于c; false: a属于elementData同时a不属于c private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0;//一个读的index,一个是写的index boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) {//只移动一次数组,比单独remove效果要好 System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) {//清理数组中不需要的引用 // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w;//记录修改次数 size = w;//重新定义size modified = true; } } return modified; } //保存数组实例的状态到一个流(即它序列化) private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } //从一个流中读出数组实例的状态 private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } } //返回一个list迭代器,链表迭代器,可以双向迭代,并且还具有add方法,但是只有在list类型中才可以使用,别的集合类没有 //接受一个Index,确定迭代器初始的位置 public ListIterator<E> listIterator(int index) { if (index < 0 || index > size)//先判断index是否合法 throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @see #listIterator(int) */ public ListIterator<E> listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @return an iterator over the elements in this list in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr * AbstractList.Itr的优化版本迭代器 */ private class Itr implements Iterator<E> { int cursor; // 下一个要被返回元素的下标 int lastRet = -1; // 上一个被返回的元素的下标,如果没有的话默认为-1 int expectedModCount = modCount; //判断是否还有下一个元素 public boolean hasNext() { return cursor != size; } //返回下一个元素,默认一开始的next是第一个元素 @SuppressWarnings("unchecked") public E next() { checkForComodification();//快速失败 int i = cursor; if (i >= size)//会判断一次位置是否合法,因为cursor只是盲目的+1 throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1;//cursor设置为下一个要被返回的元素下标 return (E) elementData[lastRet = i];//将lastRet设置为被返回的元素下标 } //删除上一个元素,也即最近被next()出来的元素 public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet);//删除的是下标为lastRet元素 cursor = lastRet;//回退 lastRet = -1;//设置成为-1,也即不能连续的删除,该类不能够往回走,只能继续前进,因为继续删除,会抛出IllegalStateException异常 expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } /* 遍历余下的元素 */ @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer);//判断consumer不能为null final int size = ArrayList.this.size; int i = cursor;//余下的体现在这.. if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]);//此处接受elementData元素,执行consumer中的方法,可能会去改变elementData元素 } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr * 一个对AbstractList.ListItr的优化版本链表迭代器 */ private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } //返回上一个元素 @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } //更新上一个位置的元素,将其置换成e public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } //新增一个元素,处在上一个元素之后,下一个元素之前,会移动数组 public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } //得到子列表 从fromIndex~toIndex位置 public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } //判断Index是否合法 static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } //继承与AbstractList的SubList类,其实这个类,只是去封装了几个属性,实际上用的还是原来ArrayList类的数组,外观模式 private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; //参数: //parent 父类型 //offset 父类型的偏移量 //fromIndex 子列表的开始元素,位于父列表的位置 //toIndex 子列表的结束元素,位于父列表的位置 SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator() { checkForComodification(); return new ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } //与forEachRemaining很像,一个是迭代所有,一个是迭代剩余,都会去执行Consumer中定义的方法,可能会改变元素的值 @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } //返回spliterator,用于并行计算中,splitable iterator可分割迭代器 @Override public Spliterator<E> spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } static final class ArrayListSpliterator<E> implements Spliterator<E> { private final ArrayList<E> list;//原数组 private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // 第一次使用时,初始化fence大小 int hi; // (a specialized variant appears in method forEach) ArrayList<E> lst; if ((hi = fence) < 0) { //-1表示初始化的值 if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } //这就是为Spliterator专门设计的方法,区分与普通的Iterator,该方法会把当前元素划分一部分出去创建一个新的Spliterator作为返回, //两个Spliterator变会并行执行,如果元素个数小到无法划分则返回null public ArrayListSpliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;//由于lo + hi都是整数,>>>相当于除2 return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator<E>(list, lo, index = mid,//注意index=min expectedModCount); } //tryAdvance就是顺序处理每个元素,类似Iterator,如果还有元素要处理,则返回true,否则返回false public boolean tryAdvance(Consumer<? super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer<? super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } //该方法用于估算还剩下多少个元素需要遍历 public long estimateSize() { return (long) (getFence() - index); } //其实就是表示该Spliterator有哪些特性,用于可以更好控制和优化Spliterator的使用 public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } //删除,增加过滤功能 @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter);//判断过滤器是否为空 // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0;//要删除元素的个数 final BitSet removeSet = new BitSet(size);//使用BitSet类来保存要被删除的Set,BitSet是使用位图来保存数据,节省很大内存 final int expectedModCount = modCount;//预期的modCount final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) {//如果element匹配filter中的过滤条件的话,则会返回true removeSet.set(i);//使用位图来保存要被删除的index removeCount++; } } if (modCount != expectedModCount) {//快速失败机制,在多线程情况下,去报错,引起程序员注意 throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0;//用于记录是否需要删除 if (anyToRemove) { //需要删除... final int newSize = size - removeCount;//计算剩余的长度,也即新数组的长度 for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {//(i < size) && (j < newSize)会节约一些效率 i = removeSet.nextClearBit(i);//得到没有被拦截的index elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) {//清除数组后面的多余引用,GC elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++;//用于记录本条数据也改变了数组结构,从这个地方可以看出来,快速失败机制并不能完全确保一定会提醒到程序员,只是有可能 } return anyToRemove; } //替换所有 @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
以上是关于ArrayList源码及解析的主要内容,如果未能解决你的问题,请参考以下文章
顺序线性表 ---- ArrayList 源码解析及实现原理分析