LightOJ 1010 Knights in Chessboard (规律)

Posted dwtfukgv

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LightOJ 1010 Knights in Chessboard (规律)相关的知识,希望对你有一定的参考价值。

题意:给定一个m*n的棋盘,问最多放多少个马,使得他们不相互攻击。

析:很明显可以从上图看出来了马放在白格,或者黑格,不会攻击,不过行或者列为1,2时是特殊的,我们只要特殊判断一下就行了。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1000 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
  return r >= 0 && r < n && c >= 0 && c < m;
}


int main(){
  int T;  cin >> T;
  for(int kase = 1; kase <= T; ++kase){
    scanf("%d %d", &n, &m);
    printf("Case %d: ", kase);
    if(m > n)  swap(m, n);
    if(m == 1){   printf("%d\n", n);  continue;  }
    if(m == 2){ printf("%d\n", n*m / 8 * 4 + min(n * m % 8, 4));  continue; }
    printf("%d\n", (m*n+1) / 2);
  }
  return 0;
}

  

以上是关于LightOJ 1010 Knights in Chessboard (规律)的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2942Knights of the Round Table(二分图判定+双连通分量)

lightoj1234调和级数+欧拉常数

LightOJ 1088 - Points in Segments 二分

Lightoj 1088 - Points in Segments 二分

lightoj-1088 - Points in Segments(二分法)

LightOJ 1089 - Points in Segments (II) 线段树区间修改+离散化