Prime Distance(二次筛素数)
Posted gccbuaa
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Prime Distance(二次筛素数)相关的知识,希望对你有一定的参考价值。
Description
The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors
(it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there
are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).
Input
Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.
Output
For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.
Sample Input
2 17 14 17
Sample Output
2,3 are closest, 7,11 are most distant. There are no adjacent primes.
解题思路:
这题做得我都是泪。不断地TLE,好不easy优化好了。又RE。代码也写得非常龊。就是正常的二次筛选素数。
因为数据非常大。第一次筛出46500以内的素数。再依据此筛选出区间内的素数。
注意:尽管给的数没有超int范围,但两数相乘是会超int范围的,我也是在这里RE了。
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; const int N = 1000005; const int M = 46500; const int INF = 999999999; bool notprime[N]; int prime_1[M + 1], prime_2[N]; int num_1 = 0, num_2; void Prime1() // 第一次筛出46500以内的素数 { memset(notprime, false, sizeof(notprime)); for(int i = 2; i <= M; i++) if(!notprime[i]) { prime_1[num_1++] = i; for(int j = 2 * i; j <= M; j += i) notprime[j] = true; } } void Prime2(int l, int u) // 第二次筛出给定范围内的素数 { memset(notprime, false, sizeof(notprime)); num_2 = 0; if(l < 2) l = 2; int k = sqrt(u * 1.0); for(int i = 0; i < num_1 && prime_1[i] <= k; i++) { int t = l / prime_1[i]; if(t * prime_1[i] < l) t++; if(t <= 1) t = 2; for(int j = t; (long long)j * prime_1[i] <= u; j++) // 相乘会超范围,用long long notprime[j * prime_1[i] - l] = 1; } for(int i = 0; i <= u - l; i++) if(!notprime[i]) prime_2[num_2++] = i + l; } int main() { int l, u, dis, a_1, b_1, a_2, b_2, minn, maxx;; Prime1(); while(scanf("%d%d", &l, &u) != EOF) { minn = INF, maxx = -1; Prime2(l, u); if(num_2 < 2) { printf("There are no adjacent primes.\n"); continue; } for(int i = 1; i < num_2 && prime_2[i] <= u; i++) { dis = prime_2[i] - prime_2[i - 1]; if(dis > maxx) { a_1 = prime_2[i - 1]; a_2 = prime_2[i]; maxx = dis; } if(dis < minn) { b_1 = prime_2[i-1]; b_2 = prime_2[i]; minn = dis; } } printf("%d,%d are closest, %d,%d are most distant.\n", b_1, b_2, a_1, a_2); } return 0; }
以上是关于Prime Distance(二次筛素数)的主要内容,如果未能解决你的问题,请参考以下文章
POJ2689:Prime Distance(大数区间素数筛)
POJ2689 Prime Distance(数论:素数筛选)
POJ-2689-Prime Distance(素数区间筛法)