图:centrality

Posted 月是故乡明95

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图:centrality相关的知识,希望对你有一定的参考价值。

【定义】Centrality:图中每个节点v的相对重要度c(v),重要度是什么可根据具体应用定义。

【估计方法】

Degree centrality

Betweenness centrality

Closeness centrality

 Eigenvector centrality

PageRank及其他

 

通常,Centrality的估计有几种方法:

1.  Degree centrality

      计算公式:C(v)=degree(v)

      备注:节点v处的边数直接作为centrality,若边是有向的,则可以有两个c(v)的定义:入度数和出度数

      此定义也可视为到v距离为1的所有路径长度。

 

2. Betweenness centrality(Freeman Linton, 1977)

     计算公式:C(v)=图中所有除节点v外的节点对之间经过v的最短路径数/图中所有除节点v外的节点对之间所有的最短路径数;

     备注:衡量v作为路由器的功率。

     计算复杂度:

1)Floyd-Warshall algorithm(也称Floyd’s algorithm, Roy-Warshall algorithm, Roy-Floyd algorithm, WFI algorithm,基于动态规划的计算任意两点间最短路径的算法,也可用于计算有向图的传递闭包),平均复杂度为theta(|V|^3),|V|为图中节点总数。

2)Johnson’s algorithm,也是计算最短路径的算法,在稀疏图中(有向、有边权),最坏情况下,O(|V|^2*Log|V|+|V|*|E|)

3)Brandes‘ algorithm (a faster algorithm for betweenness centrality, 2001), 在无权重(同权重)的图上,最坏情况下O(|V|*|E|)

 

3. Closeness centrality(Freeman, 1978; Opsahl et al., 2010; Wasserman and Faust, 1994)

     计算公式:从v到所有其他节点的最短距离和的倒数。

     备注1:这个centrality只能用于连通图,非联通图上会出现无穷大,然后所有节点的centrality都是0;

     备注2:这个centrality可用于衡量一个节点将信息传播到其他节点的时间或者花费,能用来寻找图中的community leader。

     修正1:Dangalchev(2006)对上述定义做了修正,将v到其他节点t的最短距离d(v,t)修正为2^(-d(v,t)),然后对除v之外的所有节点t的该值求和,作为centrality,使之能够用到非联通图上。

     修正2:Opsahl(2010)和Boldi and Vigna(2013)做了另外一个修正,使得其能用到非联通图上,原来的定义中先对最短距离求和,然后求倒数,该修正中反过来,先对到每个节点的距离求倒数,在对倒数求和,作为cnetrality。

 

4. Eigenvector centrality

5. PageRank及其他

以上是关于图:centrality的主要内容,如果未能解决你的问题,请参考以下文章

03.状态图活动图时序图协作图组件图部署图

系统设计之架构图——应用架构图技术架构图业务架构图

WAVE SUMMIT平行论坛 :产教融合,人才共育

系统设计之架构图——应用架构图技术架构图业务架构图

StarUML 类图 对象图

iOS 超级好用的折线统计图,柱状统计图