深入tornado中的ioLoop
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入tornado中的ioLoop相关的知识,希望对你有一定的参考价值。
本文所剖析的tornado源码版本为4.4.2
ioloop是tornado的关键,是他的最底层。
ioloop就是对I/O多路复用的封装,它实现了一个单例,将这个单例保存在IOLoop._instance中
ioloop实现了Reactor模型,将所有要处理的I/O事件注册到一个中心I/O多路复用器上,同时主线程/进程阻塞在多路复用器上;一旦有I/O事件到来或是准备就绪(文件描述符或socket可读、写),多路复用器返回并将事先注册的相应I/O事件分发到对应的处理器中。
另外,ioloop还被用来集中运行回调函数以及集中处理定时任务。
一 准备知识:
1 首先我们要了解Reactor模型
2 其次,我们要了解I/O多路复用,由于本文假设系统为Linux,所以要了解epoll以及Python中的select模块
3 IOLoop类是Configurable类的子类,而Configurable类是一个工厂类,讲解在这。
二 创建IOLoop实例
来看IOLoop,它的父类是Configurable类,也就是说:IOLoop是一个直属配置子类
class IOLoop(Configurable): ......
这里就要结合Configurable类进行讲解:
Configurable中的__new__方法
1 首先实例化一个该直属配置子类的‘执行类对象‘,也就是调用该类的configurable_default方法并返回赋值给impl:
@classmethod def configurable_default(cls): if hasattr(select, "epoll"): # 因为我们假设我们的系统为Linux,且支持epoll,所以这里为True from tornado.platform.epoll import EPollIOLoop return EPollIOLoop if hasattr(select, "kqueue"): # Python 2.6+ on BSD or Mac from tornado.platform.kqueue import KQueueIOLoop return KQueueIOLoop from tornado.platform.select import SelectIOLoop return SelectIOLoop
2 也就是impl是EPollIOLoop类对象,然后实例化该对象,运行其initialize方法
class EPollIOLoop(PollIOLoop): # 该类只有这么短短的几句,可见主要的方法是在其父类PollIOLoop中实现。 def initialize(self, **kwargs): super(EPollIOLoop, self).initialize(impl=select.epoll(), **kwargs) # 执行了父类PollIOLoop的initialize方法,并将select.epoll()传入
来看一看PollIOLoop.initialize(EPollIOLoop(),impl=select.epoll())干了些啥:
class PollIOLoop(IOLoop): # 从属配置子类 def initialize(self, impl, time_func=None, **kwargs): super(PollIOLoop, self).initialize(**kwargs) # 调用IOLoop的initialize方法 self._impl = impl # self._impl = select.epoll() if hasattr(self._impl, ‘fileno‘): # 文件描述符的close_on_exec属性 set_close_exec(self._impl.fileno()) self.time_func = time_func or time.time self._handlers = {} # 文件描述符对应的fileno()作为key,(文件描述符对象,处理函数)作为value self._events = {} # 用来存储epoll_obj.poll()返回的事件,也就是哪个fd发生了什么事件{(fd1, event1), (fd2, event2)……} self._callbacks = [] self._callback_lock = threading.Lock() # 添加线程锁 self._timeouts = [] # 存储定时任务 self._cancellations = 0 self._running = False self._stopped = False self._closing = False self._thread_ident = None # 获得当前线程标识符 self._blocking_signal_threshold = None self._timeout_counter = itertools.count() # Create a pipe that we send bogus data to when we want to wake # the I/O loop when it is idle self._waker = Waker() self.add_handler(self._waker.fileno(), lambda fd, events: self._waker.consume(), self.READ)
首先调用了IOLoop.initialize(self,**kwargs)方法:
initialize(self, make_current= make_current IOLoop.current(instance=False) IOLoop.current(instance=False) RuntimeError( current(instance== getattr(IOLoop._current, current None = self
我们可以看到IOLoop.initialize()主要是对线程做了一些支持和操作。
3 返回该实例
三 剖析PollIOLoop
1 处理I/O事件以及其对应handler的相关属性以及方法
使用self._handlers用来存储fd与handler的对应关系,文件描述符对应的fileno()作为key,元组(文件描述符对象,处理函数)作为value
self._events 用来存储epoll_obj.poll()返回的事件,也就是哪个fd发生了什么事件{(fd1, event1), (fd2, event2)……}
add_handler方法用来添加handler
update_handle方法用来更新handler
remove_handler方法用来移除handler
def add_handler(self, fd, handler, events): # 向epoll中注册事件 , 并在self._handlers[fd]中为该文件描述符添加相应处理函数 fd, obj = self.split_fd(fd) # fd.fileno(),fd self._handlers[fd] = (obj, stack_context.wrap(handler)) self._impl.register(fd, events | self.ERROR) def update_handler(self, fd, events): fd, obj = self.split_fd(fd) self._impl.modify(fd, events | self.ERROR) def remove_handler(self, fd): fd, obj = self.split_fd(fd) self._handlers.pop(fd, None) self._events.pop(fd, None) try: self._impl.unregister(fd) except Exception: gen_log.debug("Error deleting fd from IOLoop", exc_info=True)
2 处理回调函数的相关属性以及方法
self._callbacks用来存储回调函数
add_callback方法用来直接添加回调函数
add_future方法用来间接的添加回调函数,future对象详解在这
def add_callback(self, callback, *args, **kwargs): # 因为Python的GIL的限制,导致Python线程并不算高效。加上tornado实现了多进程 + 协程的模式,所以我们略过源码中的部分线程相关的一些操作 if self._closing: return self._callbacks.append(functools.partial(stack_context.wrap(callback), *args, **kwargs)) def add_future(self, future, callback): # 为future对象添加经过包装后的回调函数,该回调函数会在future对象被set_done后添加至_callbacks中 assert is_future(future) callback = stack_context.wrap(callback) future.add_done_callback( lambda future: self.add_callback(callback, future))
3 处理定时任务的相关属性以及方法
self._timeouts用来存储定时任务
self.add_timeout用来添加定时任务(self.call_later self.call_at都是间接调用了该方法)
def add_timeout(self, deadline, callback, *args, **kwargs): """ ``deadline``可能是一个数字,表示相对于当前时间的时间(与“IOLoop.time”通常为“time.time”相同的大小),或者是datetime.timedelta对象。 自从Tornado 4.0以来,`call_later`是一个比较方便的替代方案,因为它不需要timedelta对象。 """ if isinstance(deadline, numbers.Real): return self.call_at(deadline, callback, *args, **kwargs) elif isinstance(deadline, datetime.timedelta): return self.call_at(self.time() + timedelta_to_seconds(deadline), callback, *args, **kwargs) else: raise TypeError("Unsupported deadline %r" % deadline)
4 启动io多路复用器
启动也一般就意味着开始循环,那么循环什么呢?
1 运行回调函数
2 运行时间已到的定时任务
3 当某个文件描述法发生事件时,运行该事件对应的handler
使用start方法启动ioloop,看一下其简化版(去除线程相关,以及一些相对不重要的细节):
def start(self): try: while True: callbacks = self._callbacks self._callbacks = [] due_timeouts = [] # 将时间已到的定时任务放置到due_timeouts中,过程省略 for callback in callbacks: # 执行callback self._run_callback(callback) for timeout in due_timeouts: # 执行定时任务 if timeout.callback is not None: self._run_callback(timeout.callback) callbacks = callback = due_timeouts = timeout = None # 释放内存 # 根据情况设置poll_timeout的值,过程省略 if not self._running: # 终止ioloop运行时,在执行完了callback后结束循环 breaktry: event_pairs = self._impl.poll(poll_timeout) except Exception as e: if errno_from_exception(e) == errno.EINTR: # 系统调用被信号处理函数中断,进行下一次循环 continue else: raise self._events.update(event_pairs) while self._events: fd, events = self._events.popitem() # 获取一个fd以及对应事件 try: fd_obj, handler_func = self._handlers[fd] # 获取该fd对应的事件处理函数 handler_func(fd_obj, events) # 运行该事件处理函数 except (OSError, IOError) as e: if errno_from_exception(e) == errno.EPIPE: # 当客户端关闭连接时会产生EPIPE错误 pass # 其他异常处理已经省略 fd_obj = handler_func = None # 释放内存空间
start完整版
5 关闭io多路复用器
def close(self, all_fds=False): with self._callback_lock: self._closing = True self.remove_handler(self._waker.fileno()) if all_fds: # 该参数若为True,则表示会关闭所有文件描述符 for fd, handler in self._handlers.values(): self.close_fd(fd) self._waker.close() self._impl.close() self._callbacks = None self._timeouts = None
以上是关于深入tornado中的ioLoop的主要内容,如果未能解决你的问题,请参考以下文章