Hoeffding's inequality

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hoeffding's inequality相关的知识,希望对你有一定的参考价值。

Let $\{Y_i: i\in J\}$ be zero mean independent complex-valued random variables satisfying $|Y_i|\le R.$ Then for all $c>0,$

$$P\left(|\sum_{i\in J}Y_i|>c\right)\le 4\exp\left(\frac{-c^2}{4R^2|J|}\right).$$

See, Hoeffding, W, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Asociation, 58 (1963):13-30

or P. Shmerkin  Salem sets with no arithmetic progressions, international Mathematiics Research Notices.

以上是关于Hoeffding's inequality的主要内容,如果未能解决你的问题,请参考以下文章

Hoeffding不等式简介

集中不等式:Hoeffding 和 McDiarmid 讲稿十三

深度学习/机器学习入门基础数学知识整理:Hoeffding不等式,

机器学习基石机器学习的可行性

python 类实例化

VC维的来龙去脉(转载)