论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations相关的知识,希望对你有一定的参考价值。

Subject: Interactive Model Analysis

Target: Verify the performance of a model

Existing methods: statistical methods, in an aggregated fashion (e.g. accuracy)

Related work:

  1. White box approach: Aiming at visualizing the internal structures of the models
    •   Logistic Regression: transparent weighting of the features
  2. Black box approach
  3. Models comparison:
    •   ModelTracker
    • MLCube Explorer: data cube analysis type

Contribution: a workflow and an interface

Novelty

  1. Focus on input/output behaviour of a model (model agnostic)
  2. Locally and globally, decisions and feature importance

Workflow:

技术分享

Core of the explanation algorithm: Removing features from a vector until the predicted label changes.

User Interface of Rivelo

技术分享

 

Limitations: works with binary classifiers and binary features

Useful Quotes: DARPA XAI program: “the effectiveness of these systems is limited by the machines current inability to explain their decisions and actions to human users [. . .] it is essential to understand, appropriately trust, and effectively manage an emerging generation of artificially intelligent machine partners"

以上是关于论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations的主要内容,如果未能解决你的问题,请参考以下文章

Interpreting /proc/meminfo and free output for Red Hat Enterprise Linux 5, 6 and 7

R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)模型参数解读查看系数的加法效应(Interpreting the model parameters

R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)模型参数解读查看系数的加法效应(Interpreting the model parameters

[Flutter] lib/main.dart:1: Warning: Interpreting this as package URI, 'package:flutter_app/main.

R语言广义线性模型函数GLMglm函数构建泊松回归模型(Poisson regression)泊松回归模型系数解读查看系数的乘法效应(Interpreting the model para)

CVPR 2020 论文阅读笔记(三维点云/三维重建)