论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations相关的知识,希望对你有一定的参考价值。
Subject: Interactive Model Analysis
Target: Verify the performance of a model
Existing methods: statistical methods, in an aggregated fashion (e.g. accuracy)
Related work:
- White box approach: Aiming at visualizing the internal structures of the models
- Logistic Regression: transparent weighting of the features
- Black box approach
- Models comparison:
- ModelTracker
- MLCube Explorer: data cube analysis type
Contribution: a workflow and an interface
Novelty
- Focus on input/output behaviour of a model (model agnostic)
- Locally and globally, decisions and feature importance
Workflow:
Core of the explanation algorithm: Removing features from a vector until the predicted label changes.
User Interface of Rivelo
Limitations: works with binary classifiers and binary features
Useful Quotes: DARPA XAI program: “the effectiveness of these systems is limited by the machines current inability to explain their decisions and actions to human users [. . .] it is essential to understand, appropriately trust, and effectively manage an emerging generation of artificially intelligent machine partners"
以上是关于论文笔记 Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations的主要内容,如果未能解决你的问题,请参考以下文章
Interpreting /proc/meminfo and free output for Red Hat Enterprise Linux 5, 6 and 7
R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)模型参数解读查看系数的加法效应(Interpreting the model parameters
R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)模型参数解读查看系数的加法效应(Interpreting the model parameters
[Flutter] lib/main.dart:1: Warning: Interpreting this as package URI, 'package:flutter_app/main.
R语言广义线性模型函数GLMglm函数构建泊松回归模型(Poisson regression)泊松回归模型系数解读查看系数的乘法效应(Interpreting the model para)