怎么用STM32配置产生PWM
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了怎么用STM32配置产生PWM相关的知识,希望对你有一定的参考价值。
STM32产生PWM是非常的方便的,要需要简单的设置定时器,即刻产生!当然,简单的设置对于新手来讲,也是麻烦的,主要包括:(1)使能定时器时钟:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
复制代码
(2)定义相应的GPIO:
/* PA2,3,4,5,6输出->Key_Up,Key_Down,Key_Left,Key_Right,Key_Ctrl */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //下拉接地,检测输入的高电平
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* PA7用于发出PWM波,即无线数据传送 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度
GPIO_Init(GPIOA, &GPIO_InitStructure);
复制代码
(3)如果是产生PWM(频率不变,占空比可变),记得打开PWM控制,在TIM_Configuration()中。
TIM_Cmd(TIM3,ENABLE);
/* TIM1 Main Output Enable */
TIM_CtrlPWMOutputs(TIM1,ENABLE);
复制代码
利用定时器产生不同频率的PWM
有时候,需要产生不同频率的PWM,这个时候,设置与产生相同PWM的程序,有关键的不一样。
(一) 设置的原理
利用改变定时器输出比较通道的捕获值,当输出通道捕获值产生中断时,在中断中将捕获值改变,这时, 输出的I/O会产生一个电平翻转,利用这种办法,实现不同频率的PWM输出。
(二)关键设置
在定时器设置中:
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable);
复制代码
在中断函数中:
if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET)
TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);
capture = TIM_GetCapture2(TIM3);
TIM_SetCompare2(TIM3, capture + Key_Value);
复制代码
一个定时器四个通道,分别产生不同频率(这个例子网上也有)
vu16 CCR1_Val = 32768;
vu16 CCR2_Val = 16384;
vu16 CCR3_Val = 8192;
vu16 CCR4_Val = 4096;void TIM_Configuration(void)
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
/* TIM2 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* ---------------------------------------------------------------
TIM2 Configuration: Output Compare Toggle Mode:
TIM2CLK = 36 MHz, Prescaler = 0x2, TIM2 counter clock = 12 MHz
CC1 update rate = TIM2 counter clock / CCR1_Val = 366.2 Hz
CC2 update rate = TIM2 counter clock / CCR2_Val = 732.4 Hz
CC3 update rate = TIM2 counter clock / CCR3_Val = 1464.8 Hz
CC4 update rate = TIM2 counter clock / CCR4_Val = 2929.6 Hz
--------------------------------------------------------------- *//* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 65535;
TIM_TimeBaseStructure.TIM_Prescaler = 2;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* Channel 1 Configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效
TIM_OCInitStructure.TIM_Pulse = CCR1_Val; //占空时间
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; //互补端的极性
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;TIM_OC1Init(TIM2,&TIM_OCInitStructure); //通道1
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR2_Val; //占空时间
TIM_OC2Init(TIM2,&TIM_OCInitStructure); //通道2
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR3_Val; //占空时间
TIM_OC3Init(TIM2,&TIM_OCInitStructure); //通道3
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR4_Val; //占空时间
TIM_OC4Init(TIM2,&TIM_OCInitStructure); //通道4
TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);
/* TIM2 counter enable */
TIM_Cmd(TIM2,ENABLE);
/* TIM2 Main Output Enable */
//TIM_CtrlPWMOutputs(TIM2,ENABLE);/* TIM IT enable */
TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);void GPIO_Configuration(void)
GPIO_InitTypeDef GPIO_InitStructure;/*允许总线CLOCK,在使用GPIO之前必须允许相应端的时钟.
从STM32的设计角度上说,没被允许的端将不接入时钟,也就不会耗能,
这是STM32节能的一种技巧,*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE);
/* PA2,3,4,5,6,7输出->LED1,LED2,LED3,LED4,LED5,LED6 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* PB0,1输出->LED7,LED8*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* PA0,1->KEY_LEFT,KEY_RIGHT*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
GPIO_Init(GPIOA, &GPIO_InitStructure);/* PC13->KEY_UP*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
GPIO_Init(GPIOC, &GPIO_InitStructure);/* PB5->KEY_DOWN*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
GPIO_Init(GPIOB, &GPIO_InitStructure);/* GPIOA Configuration:TIM2 Channel1, 2, 3 and 4 in Output */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);
void NVIC_Configuration(void)
NVIC_InitTypeDef NVIC_InitStructure;/* Configure one bit for preemption priority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
u16 capture = 0;
extern vu16 CCR1_Val;
extern vu16 CCR2_Val;
extern vu16 CCR3_Val;
extern vu16 CCR4_Val;void TIM2_IRQHandler(void)
/* TIM2_CH1 toggling with frequency = 183.1 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)
TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 );
capture = TIM_GetCapture1(TIM2);
TIM_SetCompare1(TIM2, capture + CCR1_Val );
/* TIM2_CH2 toggling with frequency = 366.2 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
capture = TIM_GetCapture2(TIM2);
TIM_SetCompare2(TIM2, capture + CCR2_Val);
/* TIM2_CH3 toggling with frequency = 732.4 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
capture = TIM_GetCapture3(TIM2);
TIM_SetCompare3(TIM2, capture + CCR3_Val);
/* TIM2_CH4 toggling with frequency = 1464.8 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)
TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
capture = TIM_GetCapture4(TIM2);
TIM_SetCompare4(TIM2, capture + CCR4_Val);
复制代码
一个定时器一个通道,产生不同频率
其它的设置都一样,就是在主函数中修改一个参数,然后在定时器中断中,根据这个参数,改变频率。
#include "stm32lib\\stm32f10x.h"
#include "hal.h"volatile u16 Key_Value=1000; //用于保存按键相应的PWM波占空比值
int main(void)
ChipHalInit();
ChipOutHalInit();while(1)
if( (!Get_Key_Up)&(!Get_Key_Down)&(!Get_Key_Left)&(!Get_Key_Right)&(!Get_Key_Ctrl) )
Key_Value=12000;
else
if(Get_Key_Up) //按键前进按下 ,对应1kHz
Key_Value=6000;
else if(Get_Key_Down) //按键后退按下 ,对应2kHz
Key_Value=3000;
Delay_Ms(20); //10ms延时if(Get_Key_Left) //按键左转按下,对应3kHz
Key_Value=2000;
else if(Get_Key_Right) //按键右转按下,对应4kHz
Key_Value=1500;
Delay_Ms(20); //10ms延时if(Get_Key_Ctrl) //按键控制按下,对应5kHz
Key_Value=1200;
Delay_Ms(20); //10ms延时
extern volatile u16 Key_Value;
u16 capture=0;
void TIM3_IRQHandler(void)
/* TIM2_CH2 toggling with frequency = 366.2 Hz */
if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET)
TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);
capture = TIM_GetCapture2(TIM3);
TIM_SetCompare2(TIM3, capture + Key_Value);
void TIM3_Configuration(void)
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;/* TIM2 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);/*TIM1时钟配置*/
TIM_TimeBaseStructure.TIM_Prescaler = 5; //预分频(时钟分频)72M/6=12M
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
TIM_TimeBaseStructure.TIM_Period = 65535; //装载值选择最大
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0;
TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);/* Channel 1 Configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效
TIM_OCInitStructure.TIM_Pulse = Key_Value; //占空时间
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; //互补端的极性
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;TIM_OC2Init(TIM3,&TIM_OCInitStructure); //通道2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable);
/* TIM1 counter enable */
TIM_Cmd(TIM3,ENABLE);
/* TIM1 Main Output Enable */
//TIM_CtrlPWMOutputs(TIM1,ENABLE);
TIM_ITConfig(TIM3, TIM_IT_CC2 , ENABLE);
复制代码
注意:在计算PWM频率的时候,TIMx的时钟都是72Mhz,分频后,因为翻转两次才能形成一个PWM波,因为,PWM的频率是捕获改变频率的1/2。 参考技术A STM32的定时器就可以产生PWM。定时器框图有这几部分:时基(base),输入捕获(ic),输出比较(oc),以及比较捕获寄存器(ccr)。
时基部分主要是选择定时器的时钟源,分频系数等等。输入捕获是出理输入到芯片的信号的。捕获比较寄存器是各个功能所需要的寄存器。最后,输出比较功能可以输出PWM波。
PWM功能很常用,所以一般的芯片手册、HAL库都把PWM直接摘出来作为定时器的一部分。
原理是:设置一个加法计数器,比如0加到arr这个值。然后你设置一个比较值compare,这个值在0-arr之间。当加法计数器的值大于compare时,定时器输出通道的输出电平翻转。一直重复这个过程,就形成了PWM波。
显然,PWM波的周期由arr决定,占空比由compare决定。具体是怎么操作的,可以看芯片手册,还有HAL库函数。
stm32怎么产生24M的晶振驱动ov9650摄像头??
参考技术A 用定时器产生pwm波,不要用任何中断的方式来产生clk。 参考技术B 建议用定时器产生pwm波,不要用任何中断的方式来产生clk。 参考技术C 是不是可以用pll产生24,通过sysclk使用。后面用ahb到72? 参考技术D 关注这个问题 第5个回答 2015-03-03 mco输出吧以上是关于怎么用STM32配置产生PWM的主要内容,如果未能解决你的问题,请参考以下文章