基于堆栈实现计算器
Posted 左岸边
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于堆栈实现计算器相关的知识,希望对你有一定的参考价值。
周项目作业憋两天没有解决问题,只能返回老师代码重新分析。常识解决问题。
以下代码全部摘自培训班老师。
基于堆栈的方法,实现计算器。
代码分析:
#_*_coding:utf-8_*_ import re def is_symbol(element):#定义运算符函数 res=False symbol=[‘+‘,‘-‘,‘*‘,‘/‘,‘(‘,‘)‘] if element in symbol: res=True return res def priority(top_sym,wait_sym):#定义运算优先级函数 # print(‘from the priotry : ‘,top_sym,wait_sym) level1=[‘+‘,‘-‘] level2=[‘*‘,‘/‘] level3=[‘(‘] level4=[‘)‘] #运算符栈栈顶元素为+- if top_sym in level1: # if wait_sym in level1: # return ‘>‘ # elif wait_sym in level2: # top_sym=‘-‘ wait_sym=‘*‘ # return ‘<‘ # elif wait_sym in level3: # top_sym=‘-‘ wait_sym=‘(‘ # return ‘<‘ # elif wait_sym in level4: # top_sym=‘-‘ wait_sym=‘)‘ # return ‘>‘ # else: # return ‘>‘ if wait_sym in level2 or wait_sym in level3: return ‘<‘ else: return ‘>‘ #运算符栈栈顶元素为*/ elif top_sym in level2: # if wait_sym in level1:# top_sym=‘*‘ wait_sym=‘+‘ # return ‘>‘ # elif wait_sym in level2:# top_sym=‘*‘ wait_sym=‘*‘ # return ‘>‘ # elif wait_sym in level3:# top_sym=‘*‘ wait_sym=‘(‘ # return ‘<‘ # elif wait_sym in level4:# top_sym=‘*‘ wait_sym=‘)‘ # return ‘>‘ # else: # return ‘>‘ if wait_sym in level3: return ‘<‘ else: return ‘>‘ #运算符栈栈顶元素为( elif top_sym in level3: if wait_sym in level4: #右括号)碰到了(,那么左括号应该弹出栈 return ‘=‘ else: return ‘<‘ #只要栈顶元素为(,等待入栈的元素都应该无条件入栈 #运算符栈栈顶元素为),右括号与左括号是成对出现,当出现右括号时,不会将括号入栈,所以不用考虑此情况 def calculate(num1,symbol,num2):#定义计算函数。三个参数分别为数值1与于运算符和数值2 res=0 if symbol == ‘+‘: res=num1+num2 elif symbol == ‘-‘: res=num1-num2 elif symbol == ‘*‘: res=num1*num2 elif symbol == ‘/‘: res=num1/num2 print(‘from calculate res is [%s|%s|%s] %s‘ %(num1,symbol,num2,res)) return res def init_action(expression): # print(expression) expression=re.sub(‘ ‘,‘‘,expression) # print(expression) init_l=[i for i in re.split(‘(\-\d+\.*\d*)‘,expression) if i] # print(‘--->‘,init_l) expression_l=[] while True: if len(init_l) == 0:break exp=init_l.pop(0) # print(‘==>‘,exp) if len(expression_l) == 0 and re.search(‘^\-\d+\.*\d*$‘,exp): expression_l.append(exp) continue if len(expression_l) > 0: if re.search(‘[\+\-\*\/\(]$‘,expression_l[-1]): expression_l.append(exp) continue new_l=[i for i in re.split(‘([\+\-\*\/\(\)])‘,exp) if i] expression_l+=new_l # print(expression_l) return expression_l def main(expression_l): # print(‘from in the main‘,expression_l) number_stack=[] symbol_stack=[] for ele in expression_l: print(‘-‘*20) print(‘数字栈‘,number_stack) print(‘运算符栈‘,symbol_stack) print(‘待入栈运算符‘,ele) ret=is_symbol(ele) if not ret: #压入数字栈 ele=float(ele) number_stack.append(ele) else: #压入运算符栈 while True: if len(symbol_stack) == 0: symbol_stack.append(ele) break res=priority(symbol_stack[-1],ele) if res == ‘<‘: symbol_stack.append(ele) break elif res == ‘=‘: symbol_stack.pop() break elif res == ‘>‘: symbol=symbol_stack.pop() num2=number_stack.pop() num1=number_stack.pop() number_stack.append(calculate(num1,symbol,num2)) else: symbol=symbol_stack.pop() num2=number_stack.pop() num1=number_stack.pop() number_stack.append(calculate(num1,symbol,num2)) return number_stack,symbol_stack if __name__ == ‘__main__‘: expression=‘-1 - 2 *((-60+30+(-40/5)*(-9-2*-5/30-7/3*99/4*2998+10/-568/14))-(-4*-3)/(16-3*2))+3‘ # expression=‘(1-2*3)-1-2*((-60+30+(-40/5)*(-9-2*-5/30-7/3*99/4*2998+10*568/14))-(-4*-3)/(16-3*2))+3‘ # expression=‘-1 -3*( -2+3)‘ expression_l=init_action(expression) # print(expression_l) l=main(expression_l) # print(‘====>‘,l) print(‘最终结果是:%s‘ %l[0][0])
以上是关于基于堆栈实现计算器的主要内容,如果未能解决你的问题,请参考以下文章