Kattis之旅——Prime Reduction

Posted Asimple

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kattis之旅——Prime Reduction相关的知识,希望对你有一定的参考价值。

A prime number p≥2 is an integer which is evenly divisible by only two integers: 1 and p. A composite integer is one which is not prime. The fundamental theorem of arithmetic says that any integer x can be expressed uniquely as a set of prime factors – those prime numbers which, when multiplied together, give x. Consider the prime factorization of the following numbers:
10=2×5 16=2×2×2×2 231=3×7×11
Consider the following process, which we’ll call prime reduction. Given an input x:

if xx is prime, print xx and stop
factor xx into its prime factors p1,p2,…,pk
let x=p1+p2+?+pk
go back to step 1
Write a program that implements prime reduction.

Input
Input consists of a sequence of up to 2000020000 integers, one per line, in the range 22 to 109109. The number 44 will not be included in the sequence (try it to see why it’s excluded). Input ends with a line containing only the number 4.

Output
For each integer, print the value produced by prime reduction executed on that input, followed by the number of times the first line of the process executed.

Sample Input 1Sample Output 1
2
3
5
76
100
2001
4
2 1
3 1
5 1
23 2
5 5
5 6

大意就是:给你一个数x——1、如果x是素数,直接输出x以及循环的步数。2、如果不是,那就x分解质因数,把所有质因数之和给x,步数+1,执行第一步。

 

 //Asimple
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n, m, s, res, ans, len, T, k, num;

bool
is_pr(ll n) { for(int i=2; i*i<=n; i++) { if( n%i==0 ) return false; } return true; } ll solve(ll n){ ll ans = 0; int i = 2; while( n>1 ) { if( n%i==0 ) { ans += i; n /= i; if( is_pr(n) ) {//这步是关键,不写超时 ans += n; break; } } else ++i; } return ans; } void input() { while( cin >> n) { res = 1; if( n == 4 ) break; while( !is_pr(n) ) { n = solve(n); res ++; } cout << n << " " << res << endl; } } int main(){ input(); return 0; }

 

以上是关于Kattis之旅——Prime Reduction的主要内容,如果未能解决你的问题,请参考以下文章

Kattis之旅——Rational Arithmetic

G - Non-Prime Factors Kattis - nonprimefactors (筛1-n内的当前数中非素数的个数)

Kattis之旅——Inverse Factorial

Kattis, Kattis 的一些问题题解

Kattis, Kattis 的一些问题题解

Kattis-Beekeeper