Ural Amount of Degrees(数位dp)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Ural Amount of Degrees(数位dp)相关的知识,希望对你有一定的参考价值。
Amount of Degrees
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
Description
Create a code to determine the amount of integers, lying in the set [X;Y] and being a sum of exactly K different integer degrees of B.
Example. Let X=15, Y=20, K=2, B=2. By this example 3 numbers are the sum of exactly two integer degrees of number 2:
17 = 24+20,
18 = 24+21,
20 = 24+22.
18 = 24+21,
20 = 24+22.
Input
The first line of input contains integers X and Y, separated with a space (1 ≤ X ≤ Y ≤ 231−1). The next two lines contain integers K and B (1 ≤ K ≤ 20; 2 ≤ B ≤ 10).
Output
Output should contain a single integer — the amount of integers, lying between X and Y, being a sum of exactly K different integer degrees of B.
Sample
input | output |
---|---|
15 20
2
2
|
3
|
解题思路
题意:
思路:
#include<iostream> #include<string> using namespace std; int f[32][32]; int change(int x, int b) { string s; do { s = char(‘0‘ + x % b) + s; x /= b; } while (x > 0); for (int i = 0; i < s.size(); ++i) if (s[i] > ‘1‘) { for (int j = i; j < s.size(); ++j) s[j] = ‘1‘; break; } x = 0; for (int i = 0; i < s.size(); ++i) x = x | ((s[s.size() - i - 1] - ‘0‘) << i); //或运算,在此相当于加法 return x; } void init()//预处理f { f[0][0] = 1; for (int i = 1; i <= 31; ++i) { f[i][0] = f[i - 1][0]; for (int j = 1; j <= i; ++j) f[i][j] = f[i - 1][j] + f[i - 1][j - 1]; } } int calc(int x, int k) //统计[0..x]内二进制表示含k个1的数的个数 { int tot = 0, ans = 0; //tot记录当前路径上已有的1的数量,ans表示答案 for (int i = 31; i > 0; --i) { if (x & (1 << i)) //该位上是否为1 { ++tot; if (tot > k) break; x = x ^ (1 << i); //将这一位置0 } if ((1 << (i - 1)) <= x) { ans += f[i - 1][k - tot]; } } if (tot + x == k) ++ans; return ans; } int main() { int x, y, k, b; cin >> x >> y >> k >> b; x = change(x, b); y = change(y, b); init(); cout << calc(y, k) - calc(x - 1, k) << endl; return 0; }
以上是关于Ural Amount of Degrees(数位dp)的主要内容,如果未能解决你的问题,请参考以下文章
ural 1057 Amount of degrees 数位dp