Spark Streaming Transformations
Posted 天之涯0204
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark Streaming Transformations相关的知识,希望对你有一定的参考价值。
map(func):对DStream中的所有的元素进行func转换生成新的DStream
flatMap(func):和map方法类似,先对DStream中的元素进行func运算,然后压平,就是说,如果有一个元素是集合或者数组,那么会被拆成一个一个的元素
filter(func):对DStream中的元素进行func运算,把返回true的元素组成一个新的DStream
repartition(numPartitions): DStream重分区
union(otherStream):合并两个DStream
count(): 返回DStream中RDD中的元素的个数
reduce(func):聚合DStream中RDD的元素
countByValue():统计值出现的次数
reduceByKey(func, [numTasks]):对相同key的value进行func操作
join(otherStream, [numTasks]):相同key进行连接,(K, V) join (K, W) -> (K, (V, W))
cogroup(otherStream, [numTasks]):相同key进行右边的转换 (K, V) cogroup (K, W) (K, Seq[V], Seq[W])
transform(func): 对DStream中的RDD做func操作返回另外一个RDD
wordCounts.transform(rdd =>{ rdd.filter(_._1 == "hello") rdd })
updateStateByKey(func):根据key更新以前操作的结果,这个方法可以做累计操作,使用该方法要设置检查点目录,updateStateByKey方法参数需要指定类型
sc.setCheckpointDir("D://checkpoints/")
// 设置日志级别 sc.setLogLevel("ERROR") val ds1 = wordCounts.updateStateByKey[Int]((x:Seq[Int], y:Option[Int]) => { val newValue = x.sum + y.getOrElse(0) Some(newValue) })
以上是关于Spark Streaming Transformations的主要内容,如果未能解决你的问题,请参考以下文章
流式计算助力实时数据处理spark-streaming入门实战
Spark Streaming与Spark SQL结合操作详解