论文笔记《Feedforward semantic segmentation with zoom-out features》
Posted clnchanpin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文笔记《Feedforward semantic segmentation with zoom-out features》相关的知识,希望对你有一定的参考价值。
【论文信息】
《Feedforward semantic segmentation with zoom-out features》
CVPR 2015
superpixel-level,fully supervised,CNN
【方法简单介绍】
首先对输入图像以superpixel为单位提取CNN特征(使用VGG16),然后把这些特征作为CNN classifier(使用imageNet)的输入,imageNet输出是每一个superpixel的class。
【细节记录】
feature
特征提取过程是,对每一个卷积层的输出,用双线性插值的方法做upsampling使之与原图尺寸一致。然后对superpixel s的区域做pooling,这样就得到一个特征向量,这个向量的维度就是当前卷积层的卷积核个数。
例如以下图:
是对每一个superpixel下表中是VGG每一层提取特征的情况:
把每一层的输出向量连接起来,就得到终于的CNN特征。是12416维的。
作者通过实验证明,把每一个卷积层的输出都连接起来形成的特征是最优的:
zoom-out
原因在于,CNN的每一个卷积层,设卷积核大小不变,由于有下採样。图像在逐步变小。所以实际上卷积核所能感知的范围是逐步增大的,也就是文中所说的zoom out
在superpixel level。红色框区域和蓝色框区域,也就是CNN的浅层。输出的特征是local feature,主要包括这个小区域的颜色信息和密度信息,它和相邻的superpixel的特征会有较大差异。
把superpixel向外zoom out。在proximal level,能够得到橄榄色的区域。在这个level提取的特征主要捕捉superpixel周围其它superpixel的信息。已经不是local的信息了,应该是neiboring的信息。对于离得近的superpixel(如A和B的橄榄绿框),它们在这个level的receptive fileds会有较多的overlap。它们之间存在smoothness。在这一层面的特征表示会有些相似。而假设离得远(A和C),overlap小。那么它们的特征表示会有较大差异。
继续向外zoom out,在distant level。紫色的蓝色的区域,经常带来较大的overlap,可以在superpixel之间建立联系,而且,此时的感知区域已经可以包括一些object,所以这个level提取的特征会包括object的一些形状信息、空间位置信息、复杂的颜色和梯度信息。一些方法用CRF来挖掘这类信息。这样做经常带来复杂的难以求解的模型。
再zoom out,在scene level,就是对整幅图片感知,得到的是global的信息。这level的特征主要包括的信息是”what kind of an image we are looking at“,能够基本限定class的范围。
【实验设计】
1,选择combine哪些层输出的feature。最后结果最好的是全部层的输出连起来得到的feature
2,和现有的方法在VOC的结果比較mean IoU。是最优(Hypercolumns, FCN-8s, SDS, DivMbest+rerank, Codemaps, O2P, Regions&parts, D-sampling, Harmony potentials.)
3,和现有方法在SBD的结果比較pixel accuracy, class accuracy是最优(Multiscale convnet, recurrent CNN, Pylon, Recursive NN, Multilevel)
【总结】
长处
1。它把CNN每一层的特征都拿出来使用,兼顾了local信息和global信息。
2,直接使用image classification的现有成果,不用自己训练网络。方便高效,易于推广。
3,实验结果FCN的方法结果还好。
缺点
从作者贴出的example来看,切割的边缘还是有些粗糙。原因是:本文方法是直接基于superpixel做特征提取和分类的,提取的superpixel是不够准确的。一个superpixel中可能包括了多个class。要优化这个边缘,应该还是要挖掘出pixel level的细节信息。
以上是关于论文笔记《Feedforward semantic segmentation with zoom-out features》的主要内容,如果未能解决你的问题,请参考以下文章
论文笔记-语义排序-Fast Semantic Matching via Flexible Contextualized Interaction(WWW2022-yewenwen)
论文笔记之:A CNN Cascade for Landmark Guided Semantic Part Segmentation
论文笔记A Review on Deep Learning Techniques Applied to Semantic Segmentation
《SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers》论文笔记
《SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers》论文笔记
论文阅读笔记《Joint Graph Learning and Matching for Semantic Feature Correspondence》