Logistic Regression
Posted bloglxc
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Logistic Regression相关的知识,希望对你有一定的参考价值。
使hypotheses hθ(x) to satisfy 0≤hθ(x)≤1.
z > 0,g(z) > 0.5 ,y=1;
z< 0,g(z) < 0.5 ,y=0;
Cost Function:
When y = 1, we get the following plot for J(θ) vs hθ(x):
Similarly, when y = 0, we get the following plot for J(θ) vs hθ(x):
Cost(hθ(x),y) = 0 if hθ(x) = y;
Cost(hθ(x),y) ->∞ if y = 0 and hθ(x) ->1 或
者y
= 1 and hθ(x) ->0.
Simplified Cost Function:
Cost(hθ(x),y)=−ylog(hθ(x))−(1−y)log(1−hθ(x))
y = 1 时,Cost(hθ(x),y) = −log(hθ(x));
y = 0时, Cost(hθ(x),y) = -log(1−hθ(x));
Gradient Descent
向量化:θ:=θ−(α/m) XT(g(Xθ)−y⃗ )
以上是关于Logistic Regression的主要内容,如果未能解决你的问题,请参考以下文章
[机器学习实战-Logistic回归]使用Logistic回归预测各种实例