最小生成树 prime kruskal

Posted hermione1985

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最小生成树 prime kruskal相关的知识,希望对你有一定的参考价值。

带权图分为有向和无向

  • 无向图的最短路径又叫做最小生成树,有prime算法和kruskal算法;
  • 有向图的最短路径算法,有dijkstra算法和floyd算法。

  生成树的概念:联通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树 生成树是联通图的极小连通子图。所谓极小是指:若在树中任意增加一条边,则 将出现一个回路;若去掉一条边,将会使之编程非连通图。生成树各边的权 值总和称为生成素的权。权最小的生成树称为最小生成树,常用的算法有prime算法和kruskal算法。

     最小生成树(另一种描述):此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

  最短路径问题旨在寻找图中两节点之间的最短路径,常用的算法有:floyd算法和dijkstra算法。

Prim算法

1.概览

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

2.算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

下面对算法的图例描述

图例说明不可选可选已选(Vnew
 

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D
 

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F
 

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。 C, E, G A, D, F, B
 

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

 

3.简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)0)   则在Gmin中存在不属于G0

3).将加入G0中可得一个环,且不是该环的最长边(这是因为∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证.

 

Kruskal算法

1.概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

2.算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

                if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中

                                         添加这条边到图Graphnew

图例描述:

首先第一步,我们有一张图Graph,有若干点和边 

 

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

 

 

 

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。

最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

3.简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v\',把原来接在u和v的边都接到v\'上去,这样就能够得到一个k阶图G\'(u,v的合并是k+1少一条边),G\'最小生成树T\'可以用Kruskal算法得到。

我们证明T\'+{}是G的最小生成树。

用反证法,如果T\'+{}不是最小生成树,最小生成树是T,即W(T)})。显然T应该包含,否则,可以用加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{},是G\'的生成树。所以W(T-{})<=W(T\'),也就是W(T)<=W(T\')+W()=W(T\'+{}),产生了矛盾。于是假设不成立,T\'+{}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。

引用http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html

 

以上是关于最小生成树 prime kruskal的主要内容,如果未能解决你的问题,请参考以下文章

[图] 最小生成树-Prime算法和Kruskal算法

最小生成树

关于最小生成树(并查集)prime和kruskal

poj2031-Building a Space Station(最小生成树,kruskal,prime)

最小生成树(MST) prime() 算法 kruskal()算法 A - 还是畅通工程

急求KRUSKAL算法求最小生成树过程演示