79tensorflow计算一个五层神经网络的正则化损失系数防止网络过拟合正则化的思想就是在损失函数中加入刻画模型复杂程度的指标

Posted 香港胖仔

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了79tensorflow计算一个五层神经网络的正则化损失系数防止网络过拟合正则化的思想就是在损失函数中加入刻画模型复杂程度的指标相关的知识,希望对你有一定的参考价值。

‘‘‘
Created on Apr 20, 2017

@author: P0079482
‘‘‘
import tensorflow as tf
#获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为‘losses‘的集合中
def get_weight(shape,lambda1):
    #生成一个变量
    var = tf.Variable(tf.random_normal(shape),dtype=tf.float32)
    #add_to_collection函数将这个新生成变量的L2正则化损失项加入集合
    #这个函数的第一个参数‘losses‘是集合的名字,第二个参数是要加入这个集合的内容
    tf.add_to_collection(losses,tf.contrib.layers.l2_regularizer(lambda1)(var))
    #返回生成的变量
    return var

x = tf.placeholder(tf.float32,shape=(None,2))
y_= tf.placeholder(tf.float32,shape=(None,1))
batch_size=8
#定义了每一层网络中节点的个数、
layer_dimension=[2,10,10,10,1]
#神经网络的层数
n_layers=len(layer_dimension)
#这个变量维护前向传播时最深层的节点,开始的时候就是输入层
cur_layer=x
#当前层的节点个数
in_dimension=layer_dimension[0]

#通过一个循环来生成5层全连接的神经网络结构
for i in range(1,n_layers):
    #layer_dimension[i]为下一层的节点个数
    out_dimension=layer_dimension[i]
    #生成当前层中权重的变量,并将这个变量的L2正则化损失加入计算图上的集合
    weight=get_weight([in_dimension,out_dimension],0.001)
    bias=tf.Variable(tf.constant(0.1,shape=[out_dimension]))
    #使用ReLU激活函数
    cur_layer=tf.nn.relu(tf.matmul(cur_layer,weight)+bias)
    #进入下一层之前将下一层的节点个数更新为当前层节点个数
    in_dimension=layer_dimension[i]

#在定义神经网络前向传播的同时已经将所有的L2正则化损失加入了图上的集合
#这里只需要计算刻画模型在训练数据上表现的损失函数
mse_loss=tf.reduce_mean(tf.square(y_-cur_layer))

#将均方误差损伤函数加入损伤集合
tf.add_to_collection(losses,mse_loss)

#get_collection返回一个列表,这个列表是所有这个集合中的元素。在这个样例中
#这些元素就是损失函数的不同部分,将它们加起来就可以得到最终的损失函数
loss=tf.add_n(tf.get_collection(losses))

 

以上是关于79tensorflow计算一个五层神经网络的正则化损失系数防止网络过拟合正则化的思想就是在损失函数中加入刻画模型复杂程度的指标的主要内容,如果未能解决你的问题,请参考以下文章

计算机网络(五层协议)

4-网络八股扩展北京大学TensorFlow2.0

2-神经网络优化北京大学TensorFlow2.0

3-神经网络八股北京大学TensorFlow2.0

如何在 TensorFlow 中添加正则化?

网络编程-五层协议详解