Treap 实现名次树

Posted 树的种子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Treap 实现名次树相关的知识,希望对你有一定的参考价值。

在主流STL版本中,set,map,都是BST实现的,具体来说是一种称为红黑树的动态平衡BST;

但是在竞赛中并不常用,因为红黑树过于复杂,他的插入 5 种,删除 6 中,代码量极大(如果你要改板子的话);

相比之下有一种Treap的动态平衡BST,却也可以做到插入,删除,查找的期望时间复杂度O(logn);

结点定义:

struct Node {
    Node *ch[2];
    int r;  //优先级
    int v;  //
    int s;  //结点总数
    
    Node(int v):v(v) {
        ch[0] = ch[1] = NULL;
        r = rand();
        s = 1;
    }
    
    bool operator < (const Node& rhs) const {
        return r < rhs.r;
    }
    
    int cmp(int x) const {
        if(x==v) return -1;
        return x < v ? 0:1;
    }
    
    void maintain() {
        s = 1;
        if(ch[0]!=NULL) s +=ch[0]->s;
        if(ch[1]!=NULL) s +=ch[1]->s;
    }
};

 

我这里加了一些看似不需要的东西s,而这个 s却是Treap相比BST的闪光点!!!

动态平衡二叉树 BST 的性质 v,值,根大于左子树,小于右子树; cmp函数,插入,删除时,小于 v,返回 0;

 

r   : 堆的性质,大根堆,根优先级最高;

 

旋转操作是一个坎,虽然不难,但是好多书籍上面感觉欲言又止;

左旋: 由于 堆的性质,可能使得 BST 不对(插入,删除),需要旋转,比如说,o点的优先级小于 k 点的优先级,要左旋,(大于,相反)

这个时候要是还想满足BST的性质,只需要改动几个点,就ok了。

//旋转
void rotate(Node* &o,int d) {
    Node* k = o->ch[d^1];
    o->ch[d^1] = k->ch[d];
    k->ch[d] = o;
    o->maintain();
    k->maintain();
    o = k;
}

同时,maintain函数,要重新统计节点数。

 

插入操作;

首先按照普通的BST递归插入;

插入后,发现,此时的堆性质已经不满足了;要进行递归旋转!!!

//插入
void insert(Node* &o,int x) {
    if(o==NULL) o = new Node(x);
    else {
        int d = (x< o->v?0:1);  //可能有相同的元素要插入
        insert(o->ch[d],x);
        if(o->ch[d]->r > o->r) 
            rotate(o,d^1);
    }
    o->maintain();
}

同样,每次递归到一层,重新维护节点信息;

 

删除操作:

首先递归找到这个结点;

这个结点如果左子树为空,或者右子树为空,很好解决;相反的子树代替父节点;

 

要是两者都有怎么解决?保持堆的性质 和 BST的性质?

先不急于删去点,首先比较一下左右子树的优先级,把优先级较高的子树旋转到根;

例如上图中,加入 k 较高,右旋到左边的图;然后递归删除 k ,这样就保证了整个Treap树的性质!!!

//删除
void remove(Node* &o,int x) {
    int d = o->cmp(x);
    if(d==-1) {
        Node* u = o;
        if(o->ch[0]!=NULL&&o->ch[1]!=NULL) {
            int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0);
            rotate(o,d2);
            remove(o->ch[d2],x);
        }
        else {
            if(o->ch[0]==NULL) 
                o = o ->ch[1];
            else o = o ->ch[0];
        }
    }
    else {
        remove(o->ch[d],x);
    }
    if(o!=NULL) o->maintain();
}

 

注意:插入,删除,的时候没有去检查,可以先去检查了一下,这样就完全和set是一样的了

int find(Node* o,int x) {
    while(o!=NULL) {
        int d = o->cmp(x);
        if(d==-1) return 1; //存在
        else o = o->ch[d];
    }
    return 0;   //不存在
}

到了这里就已经完全实现了Treap树了,很happy\\(^o^)/~

 

但是:

如果说,Treap树和 set 是一样的,那就没必要写 Treap了,举个栗子!

名次树!!!

个人柑橘往左子树走很巧妙, (^-^)V

利用右子树有多少节点而往左子树走;

//名次树
Node* root[maxn];

//第 k 大的值
int kth(Node* o,int k) {
    if(o==NULL||k<=0||k>o->s) return 0;
    int s = (o->ch[1]==NULL ? 0: o->ch[1]->s);
    if(k==s+1) return o->v;
    else if(k<=s) return kth(o->ch[1],k);
    else return kth(o->ch[0],k-s-1);
}

 

以上是关于Treap 实现名次树的主要内容,如果未能解决你的问题,请参考以下文章

LA 5031 Graph and Queries —— Treap名次树

Treap树模板hdu-4585

非旋Treap

[Luogu 1168] 中位数

Treap树

vijosp1507郁闷的出纳员