挑战SQL:图解pandas的数据合并merge函数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了挑战SQL:图解pandas的数据合并merge函数相关的知识,希望对你有一定的参考价值。

参考技术A

大家好,我是Peter~

在实际的业务需求中,我们的数据可能存在于不同的库表中。很多情况下,我们需要进行多表的连接查询来实现数据的提取,通过SQL的join,比如left join、left join、inner join等来实现。

在pandas中也有实现合并功能的函数,比如:concat、append、join、merge。本文中重点介绍的是 merge函数 ,也是pandas中最为重要的一个实现数据合并的函数。

看完了你会放弃SQL吗?

目前Pandas系列文章已经更新了13篇,文章都是以案例+图解的风格,欢迎访问阅读。有很多个人推荐的文章:

官网学习地址: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#

参数的具体解释为:

我们创建了4个DataFrame数据框;其中df1和df2、df3是具有相同的键userid;df4有类似的键userid1,取值也是ac,和df1或df2的userid取值有相同的部分。

left、how就是需要连接的两个数据帧,一般有两种写法:

图解过程如下:

inner称之为 内连接 。它会直接根据相同的列属性userid进行关联,取出属性下面相同的数据信息a、c

⚠️上面的图解过程就是默认的使用how="inner"

outer称之为外连接,在拼接的过程中会取两个数据框中键的并集进行拼接

图解过程如下:

以左边数据框中的键为基准;如果左边存在但是右边不存在,则右边用NaN表示

图解过程如下:

以右边数据框中的键的取值为基准;如果右边存在但是左边不存在,则左边用NaN表示

图解过程如下:

笛卡尔积:两个数据框中的数据交叉匹配,出现 n1*n2 的数据量

笛卡尔积的图解过程如下:

如果待连接的两个数据框有相同的键,则默认使用该相同的键进行联结。

上面的所有图解例子的参数on默认都是使用相同的键进行联结,所以有时候可省略。

再看个例子:

还可以将left和right的位置进行互换:

上面的两个例子都是针对数据框只有具有相同的一个键,如果不止通过一个键进行联结,该如何处理?通过一个来自官网的例子来解释,我们先创建两个DataFrame:df5、df6

现在进行两个数据框的合并:

合并的图解过程如下:

在看一个通过how="outer"进行连接的案例:

看看图解的过程:

上面在连接合并的时候,两个数据框之前都是有相同的字段,比如userid或者key1和key2。但是如何两个数据框中没有相同的键,但是这些键中的取值有相同的部分,比如我们的df1、df3:

在这个时候我们就使用left_on和right_on参数,分别指定两边的连接的键:

如果我们不指定,系统就会报错,因为这两个数据框是没有相同的键,本身是无法连接的:

如果连接之后结果有相同的字段出现,默认后缀是 _x_、_y 。这个参数就是改变我们默认的后缀。我们回顾下笛卡尔积的形成;

现在我们可以指定想要的后缀:

这个参数的作用是表明生成的一条记录是来自哪个DataFrame:both、left_only、right_only

如果带上参数会显示一个新字段 _merge :

不带上参数的话,默认是不会显示来源的,看默认的情况:

merge函数真的是非常强大,在工作中也使用地很频繁,完全可以实现SQL中的join效果。希望本文的图解能够帮助读者理解这个合并函数的使用。同时pandas还有另外几个与合并相关的函数,比如:join、concat、append,会在下一篇文中统一讲解。

PANDAS 数据合并与重塑(join/merge篇)

pandas中也常常用到的join 和merge方法

merge

pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效。

和SQL语句的对比可以看这里

merge的参数

on:列名,join用来对齐的那一列的名字,用到这个参数的时候一定要保证左表和右表用来对齐的那一列都有相同的列名。

left_on:左表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。

right_on:右表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。

left_index/ right_index: 如果是True的haunted以index作为对齐的key

how:数据融合的方法。

sort:根据dataframe合并的keys按字典顺序排序,默认是,如果置false可以提高表现。

merge的默认合并方法:
    merge用于表内部基于 index-on-index 和 index-on-column(s) 的合并,但默认是基于index来合并。
  • 1
  • 2
  • 3

1.1 复合key的合并方法

使用merge的时候可以选择多个key作为复合可以来对齐合并。
  • 1
  • 2

1.1.1 通过on指定数据合并对齐的列

In [41]: left = pd.DataFrame({‘key1‘: [‘K0‘, ‘K0‘, ‘K1‘, ‘K2‘],
   ....:                      ‘key2‘: [‘K0‘, ‘K1‘, ‘K0‘, ‘K1‘],
   ....:                      ‘A‘: [‘A0‘, ‘A1‘, ‘A2‘, ‘A3‘],
   ....:                      ‘B‘: [‘B0‘, ‘B1‘, ‘B2‘, ‘B3‘]})
   ....: 

In [42]: right = pd.DataFrame({‘key1‘: [‘K0‘, ‘K1‘, ‘K1‘, ‘K2‘],
   ....:                       ‘key2‘: [‘K0‘, ‘K0‘, ‘K0‘, ‘K0‘],
   ....:                       ‘C‘: [‘C0‘, ‘C1‘, ‘C2‘, ‘C3‘],
   ....:                       ‘D‘: [‘D0‘, ‘D1‘, ‘D2‘, ‘D3‘]})
   ....: 

In [43]: result = pd.merge(left, right, on=[‘key1‘, ‘key2‘])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
技术分享图片
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

技术分享图片
没有指定how的话默认使用inner方法。

how的方法有:

left

只保留左表的所有数据

In [44]: result = pd.merge(left, right, how=‘left‘, on=[‘key1‘, ‘key2‘])
  • 1
技术分享图片
  • 1

技术分享图片

只保留右表的所有数据

In [45]: result = pd.merge(left, right, how=‘right‘, on=[‘key1‘, ‘key2‘])
  • 1
技术分享图片
  • 1

技术分享图片

outer

保留两个表的所有信息

In [46]: result = pd.merge(left, right, how=‘outer‘, on=[‘key1‘, ‘key2‘])
  • 1
技术分享图片
  • 1

技术分享图片

inner

只保留两个表中公共部分的信息

In [47]: result = pd.merge(left, right, how=‘inner‘, on=[‘key1‘, ‘key2‘])
  • 1
技术分享图片
  • 1

技术分享图片

1.2 indicator

v0.17.0 版本的pandas开始还支持一个indicator的参数,如果置True的时候,输出结果会增加一列 ’ _merge’。_merge列可以取三个值

  1. left_only 只在左表中
  2. right_only 只在右表中
  3. both 两个表中都有

1.3 join方法

dataframe内置的join方法是一种快速合并的方法。它默认以index作为对齐的列。

1.3.1 how 参数

join中的how参数和merge中的how参数一样,用来指定表合并保留数据的规则。

具体可见前面的 how 说明。

1.3.2 on 参数

在实际应用中如果右表的索引值正是左表的某一列的值,这时可以通过将 右表的索引 和 左表的列 对齐合并这样灵活的方式进行合并。

ex 1

In [59]: left = pd.DataFrame({‘A‘: [‘A0‘, ‘A1‘, ‘A2‘, ‘A3‘],
   ....:                      ‘B‘: [‘B0‘, ‘B1‘, ‘B2‘, ‘B3‘],
   ....:                      ‘key‘: [‘K0‘, ‘K1‘, ‘K0‘, ‘K1‘]})
   ....: 

In [60]: right = pd.DataFrame({‘C‘: [‘C0‘, ‘C1‘],
   ....:                       ‘D‘: [‘D0‘, ‘D1‘]},
   ....:                       index=[‘K0‘, ‘K1‘])
   ....: 

In [61]: result = left.join(right, on=‘key‘)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
技术分享图片
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

技术分享图片

1.3.3 suffix后缀参数

如果和表合并的过程中遇到有一列两个表都同名,但是值不同,合并的时候又都想保留下来,就可以用suffixes给每个表的重复列名增加后缀。

In [79]: result = pd.merge(left, right, on=‘k‘, suffixes=[‘_l‘, ‘_r‘])
  • 1
  • 2
技术分享图片
  • 1
  • 2

技术分享图片

* 另外还有lsuffix 和 rsuffix分别指定左表的后缀和右表的后缀。

1.4 组合多个dataframe

一次组合多个dataframe的时候可以传入元素为dataframe的列表或者tuple。一次join多个,一次解决多次烦恼~

In [83]: right2 = pd.DataFrame({‘v‘: [7, 8, 9]}, index=[‘K1‘, ‘K1‘, ‘K2‘])

In [84]: result = left.join([right, right2])
  • 1
  • 2
  • 3
技术分享图片
  • 1
  • 2
  • 3

技术分享图片

1.5 更新表的nan值

1.5.1 combine_first

如果一个表的nan值,在另一个表相同位置(相同索引和相同列)可以找到,则可以通过combine_first来更新数据

1.5.2 update

如果要用一张表中的数据来更新另一张表的数据则可以用update来实现

1.5.3 combine_first 和 update 的区别

使用combine_first会只更新左表的nan值。而update则会更新左表的所有能在右表中找到的值(两表位置相对应)。

示例代码参考来源——官网


以上是关于挑战SQL:图解pandas的数据合并merge函数的主要内容,如果未能解决你的问题,请参考以下文章

17、pandas的merge合并函数

PANDAS 数据合并与重塑(join/merge篇)

pandas数据合并:concatjoinappend

pandas合并/连接

pandas数据合并

pandas数据合并