51nod 1103 N的倍数

Posted 日拱一卒 功不唐捐

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了51nod 1103 N的倍数相关的知识,希望对你有一定的参考价值。

题目来源: Ural 1302
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
技术分享 收藏
技术分享 关注
一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
 
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8
2
5
6
3
18
7
11
19
Output示例
2
2
6

令i的前缀和%n为sum
如果sum=0,则输出1到i的数
用数组b[i][]记录前缀和%n=i的数有几个、分别是谁
由鸽巢原理可得,在没有sum=0的情况下,
所有的前缀和%n的结果一定有相同的数
(n-1种情况,n个前缀和)
所以本题一定有解
若a、b的前缀和%n相同
那么a+1到b之间的数的和为n的倍数
#include<cstdio>
#define N 50001
using namespace std;
int a[N],sum[N];
int n;
int b[N][3];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        sum[i]=(sum[i-1]+a[i])%n;
        if(!sum[i])
        {
            printf("%d\n",i);
            for(int j=1;j<=i;j++) printf("%d\n",a[j]);
            return 0;
        }
        b[sum[i]][++b[sum[i]][0]]=i;
        if(b[sum[i]][0]>1)
          {
              printf("%d\n",b[sum[i]][2]-b[sum[i]][1]); 
            for(int j=b[sum[i]][1]+1;j<=b[sum[i]][2];j++)
                    printf("%d\n",a[j]);
                return 0;
          }
    }
}

 

以上是关于51nod 1103 N的倍数的主要内容,如果未能解决你的问题,请参考以下文章

51nod 1103 N的倍数

51nod 1103 N的倍数(抽屉原理)

[51NOD1103] N的倍数(鸽笼原理)

AC日记——N的倍数 51nod 1103

51nod——T1103 N的倍数

51nod 1103 N的倍数 思路:抽屉原理+前缀和