Python之爬虫框架概述
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之爬虫框架概述相关的知识,希望对你有一定的参考价值。
丨综述爬虫入门之后,我们有两条路可以走。一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为
参考技术A 丨综述爬虫入门之后,我们有两条路可以走。
一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展。另一条路便是学习一些优秀的框架,先把这些框架用熟,可以确保能够应付一些基本的爬虫任务,也就是所谓的解决温饱问题,然后再深入学习它的源码等知识,进一步强化。
就个人而言,前一种方法其实就是自己动手造轮子,前人其实已经有了一些比较好的框架,可以直接拿来用,但是为了自己能够研究得更加深入和对爬虫有更全面的了解,自己动手去多做。后一种方法就是直接拿来前人已经写好的比较优秀的框架,拿来用好,首先确保可以完成你想要完成的任务,然后自己再深入研究学习。第一种而言,自己探索的多,对爬虫的知识掌握会比较透彻。第二种,拿别人的来用,自己方便了,可是可能就会没有了深入研究框架的心情,还有可能思路被束缚。
不过个人而言,我自己偏向后者。造轮子是不错,但是就算你造轮子,你这不也是在基础类库上造轮子么?能拿来用的就拿来用,学了框架的作用是确保自己可以满足一些爬虫需求,这是最基本的温饱问题。倘若你一直在造轮子,到最后都没造出什么来,别人找你写个爬虫研究了这么长时间了都写不出来,岂不是有点得不偿失?所以,进阶爬虫我还是建议学习一下框架,作为自己的几把武器。至少,我们可以做到了,就像你拿了把枪上战场了,至少,你是可以打击敌人的,比你一直在磨刀好的多吧?
丨框架概述
博主接触了几个爬虫框架,其中比较好用的是 Scrapy 和PySpider。就个人而言,pyspider上手更简单,操作更加简便,因为它增加了 WEB 界面,写爬虫迅速,集成了phantomjs,可以用来抓取js渲染的页面。Scrapy自定义程度高,比 PySpider更底层一些,适合学习研究,需要学习的相关知识多,不过自己拿来研究分布式和多线程等等是非常合适的。
在这里博主会一一把自己的学习经验写出来与大家分享,希望大家可以喜欢,也希望可以给大家一些帮助。
丨PySpider
PySpider是binux做的一个爬虫架构的开源化实现。主要的功能需求是:
· 抓取、更新调度多站点的特定的页面
· 需要对页面进行结构化信息提取
· 灵活可扩展,稳定可监控
而这也是绝大多数python爬虫的需求 —— 定向抓取,结构化化解析。但是面对结构迥异的各种网站,单一的抓取模式并不一定能满足,灵活的抓取控制是必须的。为了达到这个目的,单纯的配置文件往往不够灵活,于是,通过脚本去控制抓取是最后的选择。
而去重调度,队列,抓取,异常处理,监控等功能作为框架,提供给抓取脚本,并保证灵活性。最后加上web的编辑调试环境,以及web任务监控,即成为了这套框架。
pyspider的设计基础是:以python脚本驱动的抓取环模型爬虫
· 通过python脚本进行结构化信息的提取,follow链接调度抓取控制,实现最大的灵活性
· 通过web化的脚本编写、调试环境。web展现调度状态
· 抓取环模型成熟稳定,模块间相互独立,通过消息队列连接,从单进程到多机分布式灵活拓展
pyspider-arch
pyspider的架构主要分为 scheduler(调度器), fetcher(抓取器), processor(脚本执行):
· 各个组件间使用消息队列连接,除了scheduler是单点的,fetcher 和 processor 都是可以多实例分布式部署的。 scheduler 负责整体的调度控制。
· 任务由 scheduler 发起调度,fetcher 抓取网页内容, processor 执行预先编写的python脚本,输出结果或产生新的提链任务(发往 scheduler),形成闭环。
· 每个脚本可以灵活使用各种python库对页面进行解析,使用框架API控制下一步抓取动作,通过设置回调控制解析动作。
丨Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试
Scrapy 使用了 Twisted 异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
· 引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)
· 调度器(Scheduler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
· 下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
· 爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
· 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
· 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
· 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
· 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
· 首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取
· 引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)
· 然后,爬虫解析Response
· 若是解析出实体(Item),则交给实体管道进行进一步的处理。
· 若是解析出的是链接(URL),则把URL交给Scheduler等待抓取。 文 | 崔庆才 来源 | 静觅
Python编程基础之(五)Scrapy爬虫框架
参考技术A经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheduler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheduler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheduler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheduler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheduler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。
以上是关于Python之爬虫框架概述的主要内容,如果未能解决你的问题,请参考以下文章