Rplidar学习—— rplidar使用cartographer_ros进行地图云生成
Posted Blue Mountain
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Rplidar学习—— rplidar使用cartographer_ros进行地图云生成相关的知识,希望对你有一定的参考价值。
一、Cartographer简介
Cartographer是google开源的通用2D和3D定位与地图同步构建的SLAM工具,并提供ROS接口。官网地址:https://github.com/googlecartographer
二、安装方法
1、安装全部依赖项
sudo apt-get update sudo apt-get install -y \\ cmake \\ g++ \\ git \\ google-mock \\ libboost-all-dev \\ libeigen3-dev \\ libgflags-dev \\ libgoogle-glog-dev \\ liblua5.2-dev \\ libprotobuf-dev \\ libsuitesparse-dev \\ libwebp-dev \\ ninja-build \\ protobuf-compiler \\ python-sphinx \\ ros-kinetic-tf2-eigen \\ libatlas-base-dev \\ libsuitesparse-dev \\ liblapack-dev
2、安装ceres solver,下载安装在主目录下,由于googlesource.com需要FQ,这里使用hitcm(张明明)的github地址
# Build and install Ceres. # git clone https://ceres-solver.googlesource.com/ceres-solver # cd ceres-solver git clone https://github.com/hitcm/ceres-solver-1.11.0.git cd ceres-solver-1.11.0 mkdir build cd build cmake .. -G Ninja ninja ninja test sudo ninja install
3、安装cartographer,下载安装在主目录下,这里同样使用的是hitcm(张明明)的github地址
# Build and install Cartographer. git clone https://github.com/hitcm/cartographer.git cd cartographer mkdir build cd build cmake .. -G Ninja ninja ninja test sudo ninja install
4、安装cartographer_ros,这里使用的是hitcm(张明明)的github地址,由于google官方的教程需要FQ下载一些文件,因此容易失败,经验证hitcm(张明明)对原文件进行了少许修改后可以成功安装,在他的修改中核心代码不变,只修改了编译文件。
# Install wstool and rosdep. sudo apt-get update sudo apt-get install -y python-wstool python-rosdep ninja-build # Create a new workspace in \'catkin_ws\'. mkdir catkin_ws cd catkin_ws wstool init src # 下载到catkin_ws下面的src文件夹下面 cd src git clone https://github.com/hitcm/cartographer_ros.git # 然后到catkin_ws下面运行catkin_make安装 (会失败,所以根据提示改变命令) cd cd catkin_ws catkin_make source ./devel/setup.zsh
5、改变命令进行编译
catkin_make_isolated --install --use-ninja
6、修改cartographer_ros--cartographer_ros--launch--demo_revo_lds.launch
<launch> <param name="/use_sim_time" value="true" /> <node name="cartographer_node" pkg="cartographer_ros" type="cartographer_node" args=" -configuration_directory $(find cartographer_ros)/configuration_files -configuration_basename revo_lds.lua" output="screen"> <remap from="scan" to="scan" /> </node> <node name="rviz" pkg="rviz" type="rviz" required="true" args="-d $(find cartographer_ros)/configuration_files/demo_2d.rviz" /> </launch>
修改cartographer_ros--cartographer_ros--configuration_files--revo_lds.lua
options = { map_builder = MAP_BUILDER, sensor_bridge = { horizontal_laser_min_range = 0.3, horizontal_laser_max_range = 8, horizontal_laser_missing_echo_ray_length = 1.2, constant_odometry_translational_variance = 0., constant_odometry_rotational_variance = 0., }, map_frame = "map", tracking_frame = "laser", published_frame = "laser", odom_frame = "odom", provide_odom_frame = true, use_odometry_data = false, use_constant_odometry_variance = true, constant_odometry_translational_variance = 1e-2, constant_odometry_rotational_variance = 1e-1, use_horizontal_laser = true, use_horizontal_multi_echo_laser = false, horizontal_laser_min_range = 0.1, horizontal_laser_max_range = 30., horizontal_laser_missing_echo_ray_length = 5., num_lasers_3d = 0, lookup_transform_timeout_sec = 0.2, submap_publish_period_sec = 0.3, pose_publish_period_sec = 5e-3, } MAP_BUILDER.use_trajectory_builder_2d = true TRAJECTORY_BUILDER_2D.use_imu_data = false TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true SPARSE_POSE_GRAPH.optimization_problem.huber_scale = 1e2 return options
修改完以上2个文件重新编译一下,命令行输入
catkin_make_isolated --install --use-ninja
7、运行
最后命令行中运行rplidar的Node和launch文件
roslaunch rplidar_ros rplidar.launch
roslaunch cartographer_ros demo_revo_lds.launch
以上是关于Rplidar学习—— rplidar使用cartographer_ros进行地图云生成的主要内容,如果未能解决你的问题,请参考以下文章
Rplidar学习—— ROS下进行rplidar雷达数据采集源码分析