MlLib--逻辑回归笔记

Posted Key_Ky

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MlLib--逻辑回归笔记相关的知识,希望对你有一定的参考价值。

批量梯度下降的逻辑回归可以参考这篇文章:http://blog.csdn.net/pakko/article/details/37878837

看了一些Scala语法后,打算看看MlLib的机器学习算法的并行化,那就是逻辑回归,找到package org.apache.spark.mllib.classification下的LogisticRegressionWithSGD这个类,直接搜train()函数。

  def train(
      input: RDD[LabeledPoint],
      numIterations: Int,
      stepSize: Double,
      miniBatchFraction: Double,
      initialWeights: Vector): LogisticRegressionModel = {
    new LogisticRegressionWithSGD(stepSize, numIterations, 0.0, miniBatchFraction)
      .run(input, initialWeights)
  }

发现它调用了GeneralizedLinearAlgorithm下的一个run函数,这个类GeneralizedLinearAlgorithm是个抽象类,并且在GeneralizedLinearAlgorithm.scala文件下,并且类LogisticRegressionWithSGD是继承了GeneralizedLinearAlgorithm

  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {

    if (numFeatures < 0) {
      numFeatures = input.map(_.features.size).first()
    }

    if (input.getStorageLevel == StorageLevel.NONE) {
      logWarning("The input data is not directly cached, which may hurt performance if its"
        + " parent RDDs are also uncached.")
    }

    // Check the data properties before running the optimizer
    if (validateData && !validators.forall(func => func(input))) {
      throw new SparkException("Input validation failed.")
    }

    /**
     * Scaling columns to unit variance as a heuristic to reduce the condition number:
     *
     * During the optimization process, the convergence (rate) depends on the condition number of
     * the training dataset. Scaling the variables often reduces this condition number
     * heuristically, thus improving the convergence rate. Without reducing the condition number,
     * some training datasets mixing the columns with different scales may not be able to converge.
     *
     * GLMNET and LIBSVM packages perform the scaling to reduce the condition number, and return
     * the weights in the original scale.
     * See page 9 in http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
     *
     * Here, if useFeatureScaling is enabled, we will standardize the training features by dividing
     * the variance of each column (without subtracting the mean), and train the model in the
     * scaled space. Then we transform the coefficients from the scaled space to the original scale
     * as GLMNET and LIBSVM do.
     *
     * Currently, it‘s only enabled in LogisticRegressionWithLBFGS
     */
    val scaler = if (useFeatureScaling) {
      new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features))
    } else {
      null
    }

    // Prepend an extra variable consisting of all 1.0‘s for the intercept.
    // TODO: Apply feature scaling to the weight vector instead of input data.
    val data =
      if (addIntercept) {
        if (useFeatureScaling) {
          input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache()
        } else {
          input.map(lp => (lp.label, appendBias(lp.features))).cache()
        }
      } else {
        if (useFeatureScaling) {
          input.map(lp => (lp.label, scaler.transform(lp.features))).cache()
        } else {
          input.map(lp => (lp.label, lp.features))
        }
      }

    /**
     * TODO: For better convergence, in logistic regression, the intercepts should be computed
     * from the prior probability distribution of the outcomes; for linear regression,
     * the intercept should be set as the average of response.
     */
    val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) {
      appendBias(initialWeights)
    } else {
      /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */
      initialWeights
    }

    val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) //这里进入优化

    val intercept = if (addIntercept && numOfLinearPredictor == 1) {
      weightsWithIntercept(weightsWithIntercept.size - 1)
    } else {
      0.0
    }

    var weights = if (addIntercept && numOfLinearPredictor == 1) {
      Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1))
    } else {
      weightsWithIntercept
    }

    /**
     * The weights and intercept are trained in the scaled space; we‘re converting them back to
     * the original scale.
     *
     * Math shows that if we only perform standardization without subtracting means, the intercept
     * will not be changed. w_i = w_i‘ / v_i where w_i‘ is the coefficient in the scaled space, w_i
     * is the coefficient in the original space, and v_i is the variance of the column i.
     */
    if (useFeatureScaling) {
      if (numOfLinearPredictor == 1) {
        weights = scaler.transform(weights)
      } else {
        /**
         * For `numOfLinearPredictor > 1`, we have to transform the weights back to the original
         * scale for each set of linear predictor. Note that the intercepts have to be explicitly
         * excluded when `addIntercept == true` since the intercepts are part of weights now.
         */
        var i = 0
        val n = weights.size / numOfLinearPredictor
        val weightsArray = weights.toArray
        while (i < numOfLinearPredictor) {
          val start = i * n
          val end = (i + 1) * n - { if (addIntercept) 1 else 0 }

          val partialWeightsArray = scaler.transform(
            Vectors.dense(weightsArray.slice(start, end))).toArray

          System.arraycopy(partialWeightsArray, 0, weightsArray, start, partialWeightsArray.size)
          i += 1
        }
        weights = Vectors.dense(weightsArray)
      }
    }

    // Warn at the end of the run as well, for increased visibility.
    if (input.getStorageLevel == StorageLevel.NONE) {
      logWarning("The input data was not directly cached, which may hurt performance if its"
        + " parent RDDs are also uncached.")
    }

    // Unpersist cached data
    if (data.getStorageLevel != StorageLevel.NONE) {
      data.unpersist(false)
    }

    createModel(weights, intercept)
  }

 在上面代码中的optimizer.optimize,传入了数据data和初始化的theta,然后optimizer在LogisticRegressionWithSGD中被初始化为:

class LogisticRegressionWithSGD private[mllib] (
    private var stepSize: Double,
    private var numIterations: Int,
    private var regParam: Double,
    private var miniBatchFraction: Double)
  extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable {

  private val gradient = new LogisticGradient()
  private val updater = new SquaredL2Updater()
  @Since("0.8.0")
  override val optimizer = new GradientDescent(gradient, updater)
    .setStepSize(stepSize)
    .setNumIterations(numIterations)
    .setRegParam(regParam)
    .setMiniBatchFraction(miniBatchFraction)
  override protected val validators = List(DataValidators.binaryLabelValidator)

  /**
   * Construct a LogisticRegression object with default parameters: {stepSize: 1.0,
   * numIterations: 100, regParm: 0.01, miniBatchFraction: 1.0}.
   */
  @Since("0.8.0")
  def this() = this(1.0, 100, 0.01, 1.0)

  override protected[mllib] def createModel(weights: Vector, intercept: Double) = {
    new LogisticRegressionModel(weights, intercept)
  }
}

 optimizer被赋值为GradientDescent(gradient, updater),然后又看GradientDescent这个类:

class GradientDescent private[spark] (private var gradient: Gradient, private var updater: Updater)
  extends Optimizer with Logging {

  private var stepSize: Double = 1.0
  private var numIterations: Int = 100
  private var regParam: Double = 0.0
  private var miniBatchFraction: Double = 1.0
  private var convergenceTol: Double = 0.001

  ...
  @DeveloperApi
  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {
    val (weights, _) = GradientDescent.runMiniBatchSGD(
      data,
      gradient,
      updater,
      stepSize,
      numIterations,
      regParam,
      miniBatchFraction,
      initialWeights,
      convergenceTol)
    weights
  }
}

 发现调用的是随机梯度下降的miniBatch方法,runMiniBatchSGD:

  def runMiniBatchSGD(
      data: RDD[(Double, Vector)],
      gradient: Gradient,
      updater: Updater,
      stepSize: Double,
      numIterations: Int,
      regParam: Double,
      miniBatchFraction: Double,
      initialWeights: Vector,
      convergenceTol: Double): (Vector, Array[Double]) = {

    // convergenceTol should be set with non minibatch settings
    if (miniBatchFraction < 1.0 && convergenceTol > 0.0) {
      logWarning("Testing against a convergenceTol when using miniBatchFraction " +
        "< 1.0 can be unstable because of the stochasticity in sampling.")
    }

    val stochasticLossHistory = new ArrayBuffer[Double](numIterations)
    // Record previous weight and current one to calculate solution vector difference

    var previousWeights: Option[Vector] = None
    var currentWeights: Option[Vector] = None

    val numExamples = data.count()

    // if no data, return initial weights to avoid NaNs
    if (numExamples == 0) {
      logWarning("GradientDescent.runMiniBatchSGD returning initial weights, no data found")
      return (initialWeights, stochasticLossHistory.toArray)
    }

    if (numExamples * miniBatchFraction < 1) {
      logWarning("The miniBatchFraction is too small")
    }

    // Initialize weights as a column vector
    var weights = Vectors.dense(initialWeights.toArray)
    val n = weights.size

    /**
     * For the first iteration, the regVal will be initialized as sum of weight squares
     * if it‘s L2 updater; for L1 updater, the same logic is followed.
     */
    var regVal = updater.compute(
      weights, Vectors.zeros(weights.size), 0, 1, regParam)._2 //计算正则化的值

    var converged = false // indicates whether converged based on convergenceTol
    var i = 1
    while (!converged && i <= numIterations) { //迭代开始,在小于最大迭代数的时候不断运行
      val bcWeights = data.context.broadcast(weights)
      // Sample a subset (fraction miniBatchFraction) of the total data
      // compute and sum up the subgradients on this subset (this is one map-reduce)
      val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i)
        .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))(
          seqOp = (c, v) => {
            // c: (grad, loss, count), v: (label, features)
            val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1)) //计算一个batch中每条数据的梯度
            (c._1, c._2 + l, c._3 + 1)
          },
          combOp = (c1, c2) => {
            // c: (grad, loss, count)
            (c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3) //将batch中所有数据的梯度相加,损失函数值相加,记录batch的size
          })

      if (miniBatchSize > 0) {
        /**
         * lossSum is computed using the weights from the previous iteration
         * and regVal is the regularization value computed in the previous iteration as well.
         */
        stochasticLossHistory.append(lossSum / miniBatchSize + regVal) //原来损失函数是这样计算batch的总损失值除以batchSize再加上正则化值
        val update = updater.compute(
          weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble), //更新权重和下次的正则化值
          stepSize, i, regParam)
        weights = update._1
        regVal = update._2

        previousWeights = currentWeights
        currentWeights = Some(weights)
        if (previousWeights != None && currentWeights != None) {
          converged = isConverged(previousWeights.get,
            currentWeights.get, convergenceTol)
        }
      } else {
        logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero")
      }
      i += 1
    }

    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
      stochasticLossHistory.takeRight(10).mkString(", ")))

    (weights, stochasticLossHistory.toArray)

  }

 发现要对Batch中每一条数据计算梯度,调用的是gradient.compute函数,对于二值分类:

  override def compute(
      data: Vector,
      label: Double,
      weights: Vector,
      cumGradient: Vector): Double = {
    val dataSize = data.size

    // (weights.size / dataSize + 1) is number of classes
    require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1)
    numClasses match {
      case 2 =>
        /**
         * For Binary Logistic Regression.
         *
         * Although the loss and gradient calculation for multinomial one is more generalized,
         * and multinomial one can also be used in binary case, we still implement a specialized
         * binary version for performance reason.
         */
        val margin = -1.0 * dot(data, weights)
        val multiplier = (1.0 / (1.0 + math.exp(margin))) - label
        axpy(multiplier, data, cumGradient) //梯度的计算就是multiplier * data即,(h(x) - y)*x
        if (label > 0) {
          // The following is equivalent to log(1 + exp(margin)) but more numerically stable.
          MLUtils.log1pExp(margin) //返回损失函数值
        } else {
          MLUtils.log1pExp(margin) - margin
        }
        ... //下面有多分类,还没看
}

 利用treeAggregate并行化batch所有数据后,得到gradientSum要除以miniBatchSize,然后进入updater.compute进行权重theta和正则化值的更新,为了下一次迭代:

@DeveloperApi
class SquaredL2Updater extends Updater {
  override def compute(
      weightsOld: Vector,
      gradient: Vector,
      stepSize: Double,
      iter: Int,
      regParam: Double): (Vector, Double) = {
    // add up both updates from the gradient of the loss (= step) as well as
    // the gradient of the regularizer (= regParam * weightsOld)
    // w‘ = w - thisIterStepSize * (gradient + regParam * w)
    // w‘ = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient //这个就是权重更新的迭代式子,这个是L2正则化后的更新,神奇的是(1 - thisIterStepSize * regParam)
    val thisIterStepSize = stepSize / math.sqrt(iter)                           //记得更新式子不是w‘ = w - alpha*gradient alpha就是学习率也就是thisIterStepSize
    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector              //你会发现alpha = thisIterStepSize = 1/sqrt(iter)也就是随着迭代次数越多学习率越低,迈出的步伐越小
    brzWeights :*= (1.0 - thisIterStepSize * regParam)
    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
    val norm = brzNorm(brzWeights, 2.0)

    (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)              //正则化值就是w‘的二范数的平方乘以正则化参数regParam乘以0.5
  }
}

 

以上是关于MlLib--逻辑回归笔记的主要内容,如果未能解决你的问题,请参考以下文章

apache spark mllib中的逻辑回归 - mnist

资料推荐:Spark-mllib 源码分析之逻辑回归

为啥朴素贝叶斯不能像逻辑回归一样在 Spark MLlib 管道中工作?

Spark MLlib 机器学习

Spark MLlib 机器学习

PySpark MLLib Zeppelin Logistic回归度量标准错误:AssertionError:维度不匹配